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ABSTRACT

Threshold logic network is more viable nowadays due to its com-
pactness and strong bind to neural network applications. However,
the problem of weights and thresholds determination still remains
open. In this work, we introduce machine learning and propose two
approaches, the function-based approach and the network-based
approach, to solve the problem. Experimental results show that our
method achieves near 80% accuracy in the function-based approach
and 70% to 90% accuracy in the network-based approach.

KEYWORDS

Threshold logic network, neural network, machine learning

1 INTRODUCTION

The development of threshold logic started in 1960s. It shows supe-
rior compactness, as it costs fewer logic gates than the conventional
Boolean logic network does; thus, it makes threshold logic gates
(TLG) proper units to construct a logic network. Besides, threshold
logic networks (TLN) exhibits strong bind to neural network appli-
cations, which makes it become a competitive substitution for the
traditional CMOS technologies [1, 2].

However, previous works mostly focus on the threshold logic
synthesis problem, where the weights and thresholds are often
given in advance. Besides, machine-learning-based approaches are
seldom applied on threshold-logic-related problem, while they have
been widely adopted in a variety of EDA areas.

Therefore, we attempt to solve the problem of determining
weights and thresholds of a given TLN topology, given a func-
tion of primary inputs and primary outputs of the TLN. Section 2
details the problem formulation. Besides, as the learnability of the
problem has been proved (see Section 2), we propose two ML-based
approaches to solve the problem, the function-based approach and
the network-based approach.

The function-based approach considers a function each time. The
given TLN is first converted to a corresponding neural network, and
training is performed on the neural network to fit the given function.
Eventually, the weights and thresholds could be extracted from
the neural network directly. As for the network-based approach,
multiple functions are given and divided into training and testing
sets. Baesd on the training set, a deep neural network (DNN) is
generated. Then, the DNN model is able to to predict weights and
thresholds for the testing functions.

The main contribution of this work is summarized as follows:

e We formulate the TLN weights and thresholds learn-
ing problem, and we introduce machine-learning-based
approaches to solve the problem.

e We analyze the relation between TLNs and neural networks
and propose a conversion method. The weights and thresh-
olds of a TLN could be extracted from the corresponding
neural network directly.

e We propose a DNN-based training framework and generate a
DNN model to predict the thresholds and weights for unseen
testing functions.

In the function-based approach, experimental result shows it
achieves almost 80% prediction accuracy. The experiment results
of the network-based approach shows that our work achieves 90%
prediction accuracy on a fully-connected TLN case. For the non-
fully-connected case, it also achieves 70% prediction accuracy.

The remaining of this paper is organized as follows. Section 2
gives a detailed definition of TLN, analyzes its PAC-learnability,
and formulate the TLN weights and thresholds learning problem.
Section 3 detailes the proposed function-based approach. Section 4
describes the proposed network-based approach. Section 5 illus-
trates the experiment results and the findings. Finally, Section 6
concludes the paper and shows the potential of our work.

2 PRELIMINARIES
2.1 Threshold Logic Network

A threshold logic function f : B" — B over Boolean variables
(x1,x2, ..., xp) is defined as Equation 1, where (w1, wg, ..., wy) € R”
are the weights, and T € R is the threshold.

Lif 22 (wi-x) 2T
0, otherwise

S x2, o0 Xn) = { 1)

A threshold logic gate (TLG) is a logic unit that realizes a thresh-
old logic function. A TLG has n inputs (x1, x2, ..., X;) and 1 output
y, where x/s and y are all Boolean variables. It also holds n weights
(w1, wa, ..., wy) and 1 threshold T, where wl.’s and T are real values.
The value of output y is determined as Equation 1.

One or more TLGs comprise a threshold logic network (TLN)
N = (V,E), where V are the vertices and E C V X V are the edges.
V can be further divided into three disjoint subsets {V7, Vo, Vi }.
Vertices in Vf are the primary inputs (PIs) which have no fan-ins.
Vertices in V are the primary outputs (POs) which have no fan-
outs. The remaining vertices that belongs to Vi are normal gates.
Each vertex in Vo U V5 corresponds to a TLG, while each vertex
in V7 is just a Boolean value. Besides, N is a direct acyclic graph
(DAG) [1].

2.2 PAC-Learnability Analysis

To analyze if a problem is solvable through learning process, we
often rely on the probably approximately correct (PAC) learning
model [3]:

A concept class C is PAC-learnable over the instance space X if 3
an algorithm L s.t.V concept c € C,V fixed probability distribution
D over X, and V0 < €,8 < 1/2, if L is given access to the procedure
EX(c, D) which returns an example < x, c(x) > each time, then with
a probability at least 1 — 8, L outputs a hypothesis concept h € C s.t.
error(h) < e.

Then, the PAC-learnability can be connected with the Vapnik-
Chervonenkis-dimension (VC-dimension) through the following
theorem [3-5], as the analyses on the VC-dimensions are well-
developed:

Theorem 1: A concept class C is PAC-learnable if and only if its
VC-dimension is finite.

There have been several works studying on the VC-dimension
of learning on TLNs [6-8]. According to [6], for a TLN with a total
of W variable weights and thresholds, its VC-dimension is bounded
by 6WlogaW. In [7], the author also shows the VC-dimension of
learning on TLN is bounded by O(WInN), where N is the number
of TLGs.

As a consequence, the VC-dimension of learning on TLNs is
finite. Thus, the problem is PAC-learnable, and it’s theoretically
feasible to adopt a machine-learning-based approach to solve the
TLN weights and thresholds learning problem.
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2.3 Problem Formulation

Given the threshold logic network topology N = (V, E), in which
the weights and thresholds of TLGs in N are undetermined, and
one or more functions. The TLN weights and thresholds learning
problem is to find a set of weights and thresholds for the TLGs in
N such that the output values of POs (i.e., V) are aligned with the
given function outputs under all the PI combinations. To evaluate a
solution, the accuracy can be defined as the ratio of correct output
values. In this work, the given functions are permissible to the TLN
N; that is, there must exist a set of weights and thresholds such
that all the TLN output values are aligned with the given function
outputs.

Figure 1 illustrates an example for the TLN weights and thresh-
olds learning problem. A TLN N with 3 PIs, 1 PO, and 2 nor-
mal gates is given. A function f is specified with a truth table.
The problem is to determine the 6 weights and 3 thresholds for
the 3 TLGs in N, such that the output value ¢ is aligned with
the given output y under each input combination (x1, x2, x3). If
the output values {j} are {1,1,0,0,0,1,1, 1} under (x1,x2,x3) =
{(0,0,0),(0,0,1), ..., (1,1, 1)}, respectively, the accuracy of the so-
lution is 7/8=87.5%.
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Figure 1: An example for the TLN weights and thresholds learning
problem.

3 FUNCTION-BASED APPROACH

3.1 TLGs and Neural Neurons

In Section 2, the funtion of a TLG is defined as Equation 1. Through
transposition of terms, the output function of a TLG could be rewr-
ited as Equation 2, where H(-) represents the unit step function.
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On the other hand, the output function of a neuron in neural
networks can be represented by Equation 3, where w;’s are the
neuron weights, x;’s are the inputs, and b is the bias.

y=3L (wi-xi)+b 3)
In deep neural networks, the outputs of neurons are often fur-

ther fed through a non-linear activation function such as a logistic
function, shown in Equation 4.

y=L(ZL (wi-x;)+Db) 4
1
,where L(x) = Trea (5)

When the coefficient a in Equation 5 becomes large, L(x) could
approximate the unit step function H(x), as shown in Figure 2.
Therefore, Equation 2 and Equation 4 have the same form.

Based on the similarity, a TLG could be converted to a neuron
with activation by setting —T as the neuron bias and w;’s as the
neuron weights. Figure 3 illustrates an example of the conversion
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Figure 2: The

between a TLG and a neuron with activation. If all the TLGs in
a TLN are converted to neurons with activation, the whole TLN
becomes a neural network with logic values, i.e., a binarized neural
network (BNN) [9].
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Figure 3: The conversion between a TLG and a neuron with activa-
tion.

3.2 Our Algorithm Flow

Threshold logic network topology N u%

| Convert N to the corresponding neural network |

I

| Set x|s as features and y;s as labels |

I

| Perform neural network training

]

| Evaluate prediction results | No

Weights and Thresholds
Figure 4: The algorithm flow of the function-based approach.

Inspired by the relation between TLGs and neurons, we propose
the function-based approach to solve the TLN weights and thresh-
olds learning problem. Figure 4 shows the algorithm flow. Given
the TLN topology N = (V, E) and one target function f, we first
convert N to the corresponding neural network. To enhance the
learnability and the training efficiency, we avoid adding activation
layers at the output of the neural network. That is, only TLGs in
Vi are converted to a neuron with activation, while TLGs in Vp
are converted to a single neuron.

Second, for each input combination (x1, x2, ..., xn) of f, (x1, x2, ..., xn)

is set as the input feature and the corresponding function output y
is converted to the label y” as Equation 6. Since there is no activa-
tion layer at the last stage, the conversion is required to get aligned
with the behaviors of TLN.

, _JLify=1
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Third, we perform neural network training. In each epoch, the
weights and biases of neurons are extracted, and the weights and
thresholds of N are set accordingly. Then, the accuracy of the
solution could be evaluated. The training process continues until
the specified number of epochs is reached. Finally, the weights and
thresholds of the TLN N are obtained.

4 NETWORK-BASED APPROACH
4.1 Our Algorithm Flow

Different from the function-based approach, we consider a bunch
of permissible functions of the given TLN N at the same time. 80%
of the functions are used as the training data, while the remaining
functions are for testing. Based on the training data, a deep neural
network (DNN) is generated, where the input features are the given
function outputs Y and the output predictions are the weights
along with the thresholds for N. Then, the DNN model is applied
to predict the weights and thresholds for each testing function.

4.2 The Training Process

Fig 5 shows the training process of the network-based approach
along with an example function. In each epoch, one or several
functions are sampled from the training data. For each function f,
the output values of f are concatenated as a vector Y. For instance,
the vector Y of the function in Figure 5 is (1,0,0,0,0,1,1,1). Y is
then fed into the DNN as the input feature. The DNN model would
output a set of weights and thresholds in accordance with f. After
that, the weights and thresholds of N are set as the predicted values,
all the input combinations of f are propagated, and the TLN output
values Y’ are obtained. The evaluation process compute the mean-
square error (MSE) between Y and Y’, which is later fed back to
the DNN for parameter updatings.
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Figure 5: The training process of the network-based approach.

The DNN model consists of three fully connected linear layers,
with dimensions (2!V7! = |V, 512), (512, 512), (512, W) where W is
the total number of weights in N.

For the TLN propagation part in the training process, to compute
the output of each gate, the weighted sum of the inputs and the
threshold are compared. However, the comparison is not differen-
tiable. Consequently, its gradient is undefined and the backward
propagation of the DNN is blocked. Therefore, again, we adopted
the logistic function to replace the direct comparison. Equation 7
shows the output value of a TLG in N.

1
1 + e~ @G, (wi-x;)-T)

Output = 7)
4.3 The Testing Process

For each testing function f, the output values Y are fed into the
DNN model. The model would predict the weights and thresholds
for f. The accuracy could be evaluated as described in Section 2.
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5 EXPERIMENTAL RESULTS

The function-based approach and the network-based approach are
both implemented by the Python3 programming language with
the PyTorch library. The training and evaluation processes are
conducted on the Google Colab platform, with the Intel Xeon CPU
@ 2.20GHz, 12GB RAM, and Nvidia K80 or Tesla T4 GPU.

5.1 Data Generation

For TLN topology generation, we first specify the number of PIs, the
number of layers, and the number of TLGs in each layer. Then, there
are two modes to add edge connections. In the “random” mode, a
probability p is given. Between each pair of vertices in adjacent
layer, an edge is added with the probability p. Note that p = 1
corresponds to the special case of fullt-connected. The other is the
“fixed-input” mode, where the number of inputs n of each TLG is
fixed. For each TLG g, n distinct TLGs from the previous layer are
selected and edges are added between these TLGs and g. All the
TLGs except for the POs have at least one fan-out edge.

To collect permissible functions for each generated TLN, we
randomly set the weights and thresholds within [-1,1]. Then, we
enumerate all the input combinations, propagate the input values
through the net, and collect the outputs. As all the possible real-
value weights and thresholds could be normalized to the range [-1,1],
the method might be able to collect all the permissible functions.

In the following experiments, we focus on two TLNs. Case 1 is
a 2-layer and fully-connected network, while Case 2 is generated
based on the “fixed-input” mode. Table 1 details their statistics.

Table 1: Case statistics.

[ | Case1 [ Case2
level 3 5

Gate Count per Level 432 86421
Vil 4 8
Vol 2 1
Total Number of Weight 18 26
Total Number of Threshold 5 13

mode random | fixed-inputs

5.2 Function-Based Approach

As Case 2 is not fully-connected, the conversion to the correspond-
ing neural network requires lots of manual effort. Thus, we cur-
rently focus on the Case 1. In the following experiments, 30 func-
tions are randomly sampled for training, the batch size is set as 4,
and the Adam optimizer is applied.

Table 2 shows the result with the coefficient of the logistic func-
tion a set as 1000, and Table 3 shows the result with the coefficient
of the logistic function a set as 10000. There are four observations
about the results:

First, as the number of epochs increases, the avg. loss decreases
and the avg. accuracy increases, which implies the training proce-
dure is effective.

Second, comparing the loss and accuracy in the two tables, it
can be observed that the accuracy of a = 1000 outperforms that
of a = 10000 in the early stage of the training process (#epochs
=100, 300, 500); however, the latter one outperforms the former
one as the number of epochs increases and achieves a better accu-
racy eventually. As a higher a approximate the logistic function
more precisely, it’s reasonable that the final accuracy of a = 10000
outperforms that of a = 1000. However, a higher a also implies a
sharper logistic function, and thus the learnability of the neural
network decreases. Therefore, the a = 10000 case requires more
training epochs to achieve high-quality results.

Third, the avg. final accuracy is near 80%. However, the differ-
ence of accuracy between individual function is large. Some of the
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functions could achieve more than 90% accuracy, while some of
the functions only achieve below 50% accuracy. Thus, the training
process is not quite stable. The main reason is that the number
of data in the function-based approach for each function is only
2IV1l (i.e., 16 for case 1); therefore, it’s easy to get stuck at some
local optimal points. Moreover, the neural network architectures
are determined by the structure of the given TLNs, which are often
too simple and “shallow” to fit the given functions.

Fourth, the accuracy curve is usually not smooth in comparison
with the loss curve. Figure 6 shows an example. The small size of
training data and the limited neural network structure may also ex-
plain the phenomenon. Besides, it also reflects that the TLN weights
and thresholds learning problem itself is somehow “discrete”. Con-
sidering a TLG with two inputs. The threshold T and the weight wy
are fixed at 0, while the inputs x; and x3 are set to 1. Now, consider
the relation of the output y to the weight w;. y changes from 0
to 1 at the point w; = 0; at any other values of wi, the output y
remains the same. Similarly, for the whole TLN, the values of POs
only change at some discrete points. As a result, the accuracy curve
becomes unsmooth and the learning difficulty stays high.

Table 2: The experimental results of the function-based approach
with a = 1000 on Case 1.
[ #Epochs [[ Avg. Loss [ Avg. Accuracy |

100 1.165 0.550
300 1.002 0.594
500 0.882 0.641
1000 0.698 0.654
5000 0.508 0.758

Table 3: The experimental results of the function-based approach
with a = 10000 on Case 1.
[ #Epochs [[ Avg. Loss [ Avg. Accuracy ]

100 1.272 0.476
300 1.075 0.538
500 0.928 0.582
1000 0.704 0.678
5000 0.468 0.771
8000 0.452 0.777
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Figure 6: The loss and accuracy curves of one of the training function.

5.3 Network-Based Approach

To make the model training easier, all the thresholds are fixed as 0
during the training and testing processes. That is, we only predict
weights in our experiments.

For casel, we assign the coefficient a in the logistic function, the
number of epochs, and the training data size as the control variable,

Kevin Kai-Chun Chang and Jason Hao-Yu Wu

respectively. Fig 7 shows the effect of increasing the coefficient
a. With larger a, the loss would decrease faster, and the accuracy
becomes higher. The reason is that higher coefficients approximate
the original unit step function better.

Table 4: The accuracy with different coefficient a.

[a [ accuracy |

1 0.877
2 0.886
10 0.906

a=1:0.1229 a=2:0.1139 a = 10: 0.0939

— g1
—_—a=2

0.18 — a=10

014

012

MSE loss

0.10

008

004

0 5 10 15 20 % )
epoch

Figure 7: The MSE error with different coefficient a.

Fig 8 shows the trend of loss and error rate of Case 1. The error
rate is stuck at about 0.09 after the second epoch, though the MSE
loss keeps decreasing. That is, the variation of the accuracy is not
very smooth and even not completely aligned with the loss. To fur-
ther reduce the error rate, we may modify the model training recipe
such as the model architecture, the size of batches, the optimizer,
etc.
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Figure 8: Loss and error rate for Case 1.

As for case 2, Figure 9 shows the trend of loss and error rate of
Case 2. Since Case 2 is a more “generalized” network in comparison
with Case 1, the training difficulty becomes much higher. The error
rate is stuck at about 0.3 even if we modify the number of train-
ing functions, the learning rate, and the coefficient a. To further
reduce the error rate, more sophisticated training techniques may
be required.
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be improved to achieve better accuracy and efficiency for both
approaches, and the information of the network topology could
be considered during the training process. Besides, only permissi-
ble functions are considered in our experiments. We may include
non-permissible functions and observe their behaviors in the future.
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