
Macro Legalization
Team 15 B07901056 張凱鈞

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan
b07901056@ntu.edu.tw

Abstract—This is the final project report of Physical Design for
Nanometer ICs (Spring 2021). Macro legalization is an important
step in today’s placement flow. In this work, a constraint-graph
based macro legalization algorithm flow which combines iterative
refinement and simulated annealing is applied to solve the macro
legalization problem. Experimental result shows the flow could
achieve a balance between cost and runtime.

Index Terms—macro legalization, placement, constraint graph,
simulated annealing

I. INTRODUCTION

A. Macro Legalization

As the evolution of IC design industry, the sizes and
complexities of circuit designs have grown rapidly. A mixed-
size circuit design may contain thousands of macros and
millions of standard cells. To achieve good placement result
efficiently and robustly, a three-stage placement flow is usually
applied [1] [5]. In the first stage (prototyping), analytical place-
ment models are applied to obtain an initial placement, with
considerations on wirelength and routability. Note that macro
overlaps are permissible in this stage. In the second stage
(macro placement), the positions and orientations of macros
are determined to remove all the overlaps between macros,
while minimizing the macro displacement and maximizing
the free space. In the third stage (standard-cell placement),
standard cells are placed onto the remaining space. Macro
legalization is a step of the second stage, in which all the
overlaps are removed.

B. Previous Work

In the previous work regarding macro legalization, a va-
riety of circuit representation methods are applied, including
constraint graph, packing trees, etc. Here I focus on constraint-
graph based work.

In [2], the transitive closure graph (TCG) [6] is adopted to
represent the floorplan. Then, the TCG is optimized through an
adaptive simulated annealing method, and the macro positions
are determined by linear programming.

In [3], constraint graphs are constructed according to rela-
tive positions of each pair of macros. Then, the longest paths in
the constraint graphs are refined iteratively until the paths are
shorter than chip dimensions. For the determination of macro
positions, linear programming is also adopted.

In [4], overlaps of macros are recorded as a special type of
edges, which will all be repaired iteratively. Then, the macro

locations are determined in a greedy method to minimize the
displacement.

C. Overview of the work

In this work, constraint graphs is adopted for circuit design
representation. A method combined of iterative refinement
and simulated annealing is applied. In the first stage, an
acceptable solution is found by iterative refinement efficiently.
Then, better solutions are found through a simulated annealing
scheme. As a result, the method could achieve a balance
between cost and runtime.

The remainder of this report is organized as follows.
Section II define the macro legalization problem. Section III
describes the proposed algorithm of this work. Section IV
shows the experimental result. Section V concludes this work.

II. PROBLEM FORMULATION

The problem formulation of this work follows the definition
in Problem D of ICCAD 2021 CAD Contest [1].

A. Preliminaries

1) Displacement D =
∑

mi
|x′i − xi|+ |y′i − yi|, where

(xi, yi) and (x′i, y
′
i) are the positions of macro mi before

and after legalization, respectively.
2) Unavailable areas for standard cells: Given the “pow-

erplan width constraint”, the channels between macros
with a width less than the constraint are regarded as
unavailable areas for standard cells. The total unavailable
area is denoted as A.

B. The Macro Legalization Problem

Given a set of rectangular macros with their initial positions
(represented by the coordinates of left-bottom corner) and the
boundary of the chip, find positions for the movable macros
without violating the following constraints:

1) All the macros locate inside the chip boundary.
2) The locations of fixed macros remain unchanged.
3) Minimum channel spacing: the spaces in x- or y-

directions between each pair of neighbor macros should
exceed the given distance.

4) Buffer area reservation: for each macro, there must
exists available spaces for standard cells after extending
a given distance from the boundary.

The objective is to minimize the following cost function,
where α and β are between 0 and 100000:

Cost = α ·D + β ·A0.5 (1)

III. ALGORITHM

A. Algorithm Flow

The algorithm flow is shown in Figure 1. After the DEF
file (the initial macro placement), the LEF file (the macro
library) and the constraint file are parsed, two constraint
graphs (for vertical and horizontal directions, respectively) are
constructed. In the iterative refinement stage, the longest path
length is computed in each iteration. If the length is longer
than the chip dimension, the longest path will be refined
until the length becomes no longer than chip dimension. The
coordinates of macros are then determined. In the last stage,
simulated annealing is applied on the constraint graphs to
further improve the placement.

Fig. 1. Algorithm Flow

B. Constraint Graph Initialization

In this stage, two constraint graphs Gh = (Vh, Eh) and
Gv = (Vv, Ev) are constructed for horizontal constraints and
vertical constraints, respectively.

1) Graph Vertices: Each macro mi corresponds to a vertex
vi in Gh (e.g., v1 to v4 in Figure 2) and a vertex v′i in Gv .
In addition, two extra vertices representing the left boundary
and the right boundary are added to Gh (e.g., s and t in
Figure 2), while two vertices for the bottom boundary and the
top boundary are added to Gv . For rectilinear chips, pseudo
macros and corresponding vertices are added to fill the chip
into a rectangular one (e.g., p1 and p2 in Figure 2). The pseudo
macros are set as fixed to make sure these macros won’t be
moved in the following stages.

Fig. 2. Chip (the chip boundary is highlighted in orange)

2) Graph Edges: Between each pair of macros (including
pseudo macros), exact one constraint edge is added to either
Gh or Gv . In addition, an edge is added between each source
vertex (left boundary in Gh and bottom boundary in Gv) and
each macro, and an edge is added between each macro and
each sink vertex (right boundary in Gh and top boundary in
Gv). To determine to which graph the edge is added, consider
the relative positions of macros as described in, which is
inspired by [3]. If the two macros overlap in neither directions,
the direction of larger distance is chosen (case 1 in Figure 3).
If the two macros overlap in one direction, the other direction
is chosen (case 2 in Figure 3). If the two macros overlap on
both directions (i.e. need to be legalized), the direction with
smaller overlap is chosen (case 3 in Figure 3). In summary,
the direction which is less possible to become overlap will be
chosen.

The edge weight is determined by formula (2) to (7). For

Fig. 3. Determination of edge direction

edges between source vertices (s in Gh and s’ in Gv) and
macros, the edge weights are set as:

w(s, vi) =

{
0 if mi is movable
mi.x if mi is fixed

(2)

w(s′, v′i) =

{
0 if mi is movable
mi.y if mi is fixed

(3)

For edges between macros and sink vertices (t in Gh and
t’ in Gv), the edge weights are set as:

w(vi, t) =

{
mi.width if mi is movable
chip.right−mi.x if mi is fixed

(4)

w(v′i, t
′) =

{
mi.height if mi is movable
chip.top−mi.y if mi is fixed

(5)

For edges between two macros or pseudo macros, the edge
weights are set as:

w(vi, vj) = mi.width+ powerplan width (6)

w(v′i, v
′
j) = mi.height+minimum channel spacing (7)

An example initial placement and its corresponding hori-
zontal constraint graph is shown in Figure 4.

C. Iterative Refinement

Inspired by [3], in the iterative refinement stage (Al-
gorithm 1), the longest path of GH and Gv are computed
in each iteration. The longest paths will be refined if they are
longer than the corresponding chip dimensions. If both longest
path exceeds the corresponding chip dimension, the direction
exceeding more will be refined first. To refine the longest path
(Algorithm 2), each edge in the path is tested if it’s “available”,
that is, moving the edge to the opposite direction doesn’t
further violate the chip dimension. The available edge whose
two corresponding macros having the largest distance on the
opposite direction is chosen as the edge being moved. The
iterative refinement stages continues until the longest paths are
shorter than chip dimensions in both directions. Note that in
each direction, the algorithm only focuses on the longest path.
Moreover, the process often terminates after a few iterations
empirically.

Algorithm 1: Iterative Refinement
//lengthh denotes the longest horizontal path length
//lengthv denotes the longest vertical path length
while lengthh > (chip.right - chip.left) or lengthv >
(chip.top - chip.bottom) do

if lengthh > (chip.right - chip.left) and lengthv >
(chip.top - chip.bottom) then

if lengthh - (chip.right - chip.left) > lengthv -
(chip.top - chip.bottom) then

refineLongestPath(H, lengthv);
else

refineLongestPath(V, lengthh);
end

else if lengthh > (chip.right - chip.left) then
refineLongestPath(H, chip.top− chip.bottom);

else if lengthv > (chip.top - chip.bottom) then
refineLongestPath(V, chip.right− chip.left);

end

D. Simulated Annealing

After feasible constraint graphs are found, simulated anneal-
ing is performed to further improve the cost. According to the
operations to perturb a TCG [6], three operations are adopted
for the constraint graph perturbation:

1) Move: Move an edge to the opposite direction
2) Swap: Swap two macros in both horizontal and vertical

graphs
3) Reverse: Reverse an edge in horizontal or vertical graph

Algorithm 2: refineLongestPath(H/V, ld)
input: H/V, chip dimension of the other direction ld
//pathh denotes the longest horizontal path
//pathv denotes the longest vertical path
if H then

for each edgei ∈ pathh do
Set edgei available if move edgei to vertical
doesn’t violate ld;

end
Move the available edge with the largest vertical
distance to vertical;

else if V then
for each edgei ∈ pathv do

Set edgei available if move edgei to
horizontal doesn’t violate ld;

end
Move the available edge with the largest horizontal
distance to horizontal;

The cost function is defined as formula (1). The simulated
annealing terminates when the number of consecutive uphill
moves exceeds a specific number x.

E. Macro Coordinate Determination

Given the constraint graphs, the locations of the macros can
be determined through Algorithm 3, which is inspired by [4].
Macros are moved to a location as close to the initial location
as possible, in order to minimize the macro displacement.

Algorithm 3: Macro Location Determination
// For x-coordinates determination
Propagate from source vertices to obtain most left

possible coordinates for macros;
Back-propagate from sink vertices to obtain most right

possible coordinates for macros;
Compute mi.slack = mi.rightmost−mi.leftmost
for each mi;

for each mi in increasing order of slack do
if mi.left <= mi.xinitial <= mi.right then

mi.x = mi.xinitial;
else if mi.xinitial > mi.right then

mi.x = mi.right;
else if mi.xinitial < mi.left then

mi.x = mi.left;
end
// Similar for y-coordinates determination (omit)

IV. EXPERIMENTAL RESULT

Table I shows the statistics of the two cases provided by
ICCAD 2021 CAD Contest [1], including the weights of cost
functions ,the number of macros and the unit distance. Note
that the displacements and areas in below tables follow these
units.

Table II shows the result with iterative refinement only.
With a quite short runtime and few iterations, the method could

Fig. 4. Example Initial Placement and Corresponding Horizontal Constraint Graph

TABLE I
CASE STATISTICS

Case α β] Macros Unit Distance
caseSample 1 8 11 µm/1000

case1 1 4 84 µm/2000

TABLE II
RESULT OF ITERATIVE REFINEMENT

Case D A Cost CPU time(sec)] Iterations
caseSample 409 2643.8 820.3 0.001 1

case1 6998.3 123960.8 8406.6 0.005 8

find acceptable solutions.
After iterative refinement, simulated annealing is applied to

further improve the solution. The result is shown in Table III.
The costs of both cases are further reduced through simulated
annealing, especially for the unavailable areas A. However, it
takes a longer runtime.

Based on the experimental results, it may be referred that
iterative refinement could find an acceptable solution in a short
time, while simulated annealing could obtain a better solution,
paying a price of longer runtime. As a result, the combination
of iterative refinement and simulated annealing may achieve a
balance between performance and efficiency.

The layouts of initial placement and the placement after
iterative refinement plus simulated annealing of case1 is shown
in Figure 5.

V. CONCLUSION

In this work, a constraint-graph based macro legalization
algorithm flow that combines iterative refinement and simu-
lated annealing is proposed. Experimental result shows the

TABLE III
RESULT OF ITERATIVE REFINEMENT + SIMULATED ANNEALING

Case D A Cost CPU time(sec)
caseSample 421.5 1232.5 702.4 0.006

case1 7002.3 90139.7 8203.2 0.091

flow could achieve a balance between cost and runtime.
Future work includes:

1) Design more aggressive strategies for constraints:
To meet the buffer area reservation requirement, power-
plan width constraint is currently relaxed into the edge
weight, which might be too conservative.

2) Apply linear programming on macro location deter-
mination: The current method on the determination of
locations is quite fast; however, through linear program-
ming, the locations causing lower cost may be found.

REFERENCES

[1] Maxeda Technology Inc., “ICCAD 2021 CAD Contest Problem D:
Macro Legalization,” http://iccad-contest.org/2021/tw/

[2] Hsin-Chen Chen, Yi-Lin Chuang, Yao-Wen Chang and Yung-Chung
Chang, “Constraint graph-based macro placement for modern mixed-
size circuit designs,” 2008 IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 218-223

[3] J. Cong and M. Xie, “A Robust Mixed-Size Legalization and Detailed
Placement Algorithm,” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1349-1362, Aug.
2008

[4] Michael D. Moffitt, Jarrod A. Roy, Igor L. Markov, Martha E. Pollack,
“Constraint-driven floorplan repair,” in ACM Trans. Design Autom.
Electr. Syst. 13(4): 67:1-67:13, 2008

[5] Yao-Wen Chang, “Unit 5: Placement (Lecture Notes in Physical Design
for Nanometer ICs 2021 Spring),” 2021

[6] Jai-Ming Lin and Yao-Wen Chang, “TCG: A transitive closure graph-
based representation for general floorplans,” in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 13, no. 2, pp. 288-
292, Feb. 2005

Fig. 5. Layout (left: initial; right: output)

