Interchange Management

Kevin Kai-Chun Chang

Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
b07901056@ntu.edu.tw

ABSTRACT

The areas near interchanges are often the most congested parts of a
highway. In this work, we formulate the interchange management
problem as an scheduling, decision-making, and optimization prob-
lem. We convert the problem onto the graph domain and adopt
simulated annealing to optimize. Experimental result shows that
our algorithm outperforms the first-come-first-serve strategy in
terms of the total time required for all the vehicles passing the
interchange area.

KEYWORDS

Connected and autonomous vehicle, constraint graph, simulated
annealing, interchange management

1 INTRODUCTION

The areas near interchanges are often the most congested parts
of a highway. If the trajectories and passing orders of vehicles are
be planned appropriately, the traffic jam on the highway could be
extremely improved. As an interchange is a complicated system, the
interchange management problem combines multiple sub-problems
such as lane changing, lane merging, and lane splitting, etc. Previ-
ous works mainly focus on one or some of the sub-problems, and
several methods have been proposed to solve the sub-problems re-
spectively, which may be adopted to solve the interchange manage-
ment problem. However, the solution quality may degrade during
the integration across the sub-problems and sub-solutions.

In this work, we model the interchange system and define the in-
terchange management problem accordingly. We treat the problem
as a scheduling, decision-making, and optimization problem. Given
the information of vehicles and road, the trajectories of vehicles are
then determined. We introduce “constraint graph” to represent the
problem, and we can perform solution extraction, cost evaluation,
and optimization on the graph structure. To optimize the solutions,
we adopt a simulated-annealing-based approach.

The main contribution of this work is summarized as follows:

e We model the system for interchange management and for-
mulate it as a scheduling, decision-making, and optimization
problem.

e We convert the problem onto the graph domain, on which so-
lution extraction, cost evaluation, and optimization could be
performed. Moreover, we can benefit from the well-developed
algorithms on graphs.

e We adopt simulated annealing to optimize the solutions
which is suitable for the real situation. In the real world,
the interchange manager receives the information from vehi-
cles periodically. Through the simulated annealing, we may
converge to a high-quality solution rapidly.

Experimental results shows that our algorithm outperforms the
first-come-first-serve strategy in terms of the total time required
for all the vehicles passing the interchange area. In addition, the
runtime overhead of our algorithm is subtle.

The remaining of this paper is organized as follows. Section 2
models the system of interchange and formulate the interchange
management problem. Section 3 details our proposed algorithm.
Section 4 shows the experimental results, and Section 5 concludes
this paper.

2 SYSTEM MODELING AND PROBLEM
FORMULATION

2.1 System Modeling

To formulate and solve the problem of interchange management,
we can model the system via the following definitions, which are
mainly inspired by [2]:

e Lanes and Lane Changing: In the area near the inter-
change, there are two kinds of lanes: inner lanes and outer
lanes (i.e., exit lanes). Vehicles that intend to stay on the high-
way should switch to or keep on inner lanes, while vehicles
that intend to leave must change to or keep on exit lanes. As
Figure 1 shows. Moreover, all the lane changing should be
performed before the end of the road segment.

[)
L)

Vehicles to keep

()

Vehicles to exit

Figure 1: Lanes and lane changing.

¢ Discrete Points and Trajectory: To treat the interchange
management problem as an optimization problem, some
discrete points are added into each lane, as shown in Figure 2.
The intervals between each pair of adjacent discrete points
are the same, and the number of discrete points on each
lane is adjustable. Vehicles could change lane at most once
between each pair of adjacent points. That is, if vehicle A;
passes the k-th discrete point on the h-th lane, it may pass
the k + 1-th discrete point on the h — 1-th lane, the h-th lane,
or the h + 1-th lane. As a result, the trajectory of a vehicle
could be determined by (1) the arrival time and (2) on which
lane it locates at each discrete point.

@) /O O-\ @) o
O/ @) @) *O @)

Figure 2: Discrete points. Vehicles could change lane at most once
between adjacent discrete points, shown as the red arrows.

¢ Interchange Manager: We assume there is a centralized
interchange manager at the roadside. It periodically receives
information (e.g., speed and position) from each vehicle, and
determines the vehicle trajectories. To simplify the problem,
we assume the interchange manager could compute the ear-
liest arrival time of each vehicle to the first discrete point
before any vehicle enters the road segment, and the earliest
arrival time of each vehicle remains fixed afterwards.

e Same-Lane Traveling Time (Ts7): To model the speed and
the movement of vehicles, we define the same-lane travel-
ing time, denoted as Tst, to represent the minimum time
required for a vehicle traveling from the k-th discrete point

Introduction to Intelligent Vehicles, Fall 2021, NTU

n o {[@e o o o
v
o | o [O O

’

Figure 3: Same-lane traveling time. If the green vehicle is on the k-th
discrete point at time T, and it arrives at the k + 1-th discrete point
on the same lane at time T, the time interval 7; — T} must be larger
than or equal to Tst.

to the k + 1-th discrete point on the same lane, as Figure 3
shows.

e Cross-Lane Traveling Time (Tc7): Similarly, we could
define the cross-lane traveling time, denoted as TcT, to rep-
resent the minimum time required for a vehicle traveling
from the k-th discrete point on the h-th lane to the k + 1-th
discrete point on the i — 1-th or the h+ 1-th lanes, as Figure 4

shows.

o Cb o‘g o o
"o o o o o
¥ i
. © i o o ® ®

"o o ([@p @ e

Figure 4: Cross-lane traveling time. If the green vehicle is on the
k-th discrete point of the h-th lane at time Tj, and it arrives at the
k + 1-th discrete point of the h + 1-th (or & — 1-th) lane at time T3, the
time interval T, — T} must be larger than or equal to Tcr.

e Same-Lane Separating Time (Tss): To model the safe fol-
lowing distance of two vehicles on the same lane, we define
the same-lane separating time, denoted as Tsg, to represent
the minimum time gap between the arrivals of two vehicles
to the same discrete point, as shown in Figure 5.

T @ C})
\

r, O o

’

@ o

Figure 5: Same-lane separating time. The blue vehicle and the green
vehicle pass the same discrete point successively. The time interval
T; — Ty must be larger than or equal to Tss.

e Cross-Lane Separating Time (Tcs): We define the cross-
lane separating time, denoted as Tcg, to model the situation
that two vehicles on adjacent lanes perform lane-changing
at the same segment. Figure 6 illustrates the definition.

Kevin Kai-Chun Chang

.0 Q[j e S o
e 0 o 0 o
3 ? ;
@ o o o ®
"o o [k o o

Figure 6: Cross-lane separating time. At the k-th discrete point, the
blue vehicle is on the h-th lane and the green vehicle is on the h+1-th
(or h — 1-th) lane. Then, the blue vehicle moves to the k + 1-th (or
h—1-th) lane at the k-th discrete point, while the green vehicle moves
to the h-th lane at the same time. The time interval T, — T must be
larger than or equal to Tcs.

2.2 Problem Definition

Based on the above system modeling, the interchange management
problem could be defined as follows.
e Input:
1. The number of vehicles N, the number of discrete points
on each lane M, the number of inner lanes A, and the
number of exit lanes B.
2. The earliest arrival time, incoming lane, and whether to
exit of each vehicle A;.
3. The traveling and separating timing constraints including
Tst, T, Tss, and Tcs.
e Output: The trajectory of each vehicle.
e Objective: Minimize the scheduled arrival time of the last
car at the last discrete point, denoted as the longest arrival
time.

3 PROPOSED ALGORITHM

Figure 7 show the algorithm flow of our work. Since the algorithms
and manipulations on graphs are well-developed, and graph-based
methods have been applied on several problems of connected vehi-
cles such as the intersection management problem [3], we convert
the input information into a graph, called as the constraint graph.
Then, the initial solution could be extracted from the constraint
graph and compute the corresponding cost (i.e., the longest ar-
rival time). Eventually, simulated annealing is performed to find an
optimal solution.

Vehicle Information and Timing Constraints |

v

| Build Constraint Graph |

T

| Extract Initial Solution |

Simulated Annealing

| Perform a Permutation |
1

| Evaluate Longest Arrival Time |
1

| Accept / Not Accept |

Trajectories of Vehicles

Figure 7: The algorithm flow.

Interchange Management

3.1 Constraint Graph Construction

e Nodes: For each vehicle A;, we enumerate all the discrete
points that A; might pass. That is, if A; passes the k-th dis-
crete point on the h-th lane within some of its trajectories, a
node (i, h, k) is added to the constraint graph. Figure 8 shows
an example. The first and the second lanes are inner lanes
(i.e., keeping lanes), while the third and the fourth lanes are
outer lanes (i.e., exit lanes). The vehicle A; which intends to
leave the highway comes from the first lane. Then, it could
change at most one lane between each pair of discrete points,
and leave the road segment via the third or the fourth lane.

Al

A, is to exit Keeping
o
Exit
Lanes

Figure 8: Adding nodes to the constraint graph.

o Path Edges: After adding all the nodes for vehicle A;, we
connect the nodes by path edges, which represent the possi-
ble paths for A;. The edges are directed and weighted, with
the direction begin the same as the possible direction of the
vehicle, and the weight being the corresponding minimum
traveling time across the path (i.e., Tst or Tcr). Figure 9
shows the path edges and their weights.

e Constraint Edges: For the separating timing constraints,
two kinds of constraint edges are added to the graph. For
each pair of nodes (i, h, k) and (j, b, k), add an edge for the
same-lane separating time constraint. The weight of the edge
is the same-lane separating time Tgg, as shown in Figure 10.
Similarly, for the cross-lane separating time constraint, if
edge (i, h, k) — (i, h+1,k+1) and edge (j, h+1,k) — (j, h k+
1) both exist, add an edge connecting (i,h + 1,k + 1) and
(j, b, k + 1) with the weight being the cross-lane separating
time Tcg, as illustrated in Figure 11. Note that in the most
cases, the directions of the constraint edges is reversible.
Thus, the directions can be viewed as bi-directed here and
will be determined during each solution extraction.

3.2 Solution Extraction

As we enumerated the possible nodes and paths for each vehicle, the
constraint graph collect all the solutions for the problem. To extract
a specific solution from the constraint graph, there are two thing
to determine. First, we need to determine the path of each vehicle.
That is, select the nodes the vehicle is going to pass in the current

Keeping
Lanes

Exit
Lanes

Figure 9: Adding path edges to the constraint graph.

Introduction to Intelligent Vehicles, Fall 2021, NTU

TS S TS S

Figure 10: Adding constraint edges for the same-lane separating time
to the constraint graph.

TC S

Figure 11: Adding constraint edges for the cross-lane separating time
to the constraint graph.

solution. On the other words, it can viewed as determining the
lane-changing points for the vehicles. Figure 12 shows an example.
Second, we have to determine the direction for each constraint edge.
As cycles in the constraint graph could incur deadlocks, we maintain
a priority sequence for each lane. After we determine the priorities
of each vehicle on each lane, the directions of constraint edges
could be decided accordingly, and no cycle will appear. Figure 13
shows an example.

The solution extraction could be viewed as extracting a sub-
graph from the original constraint graph. As shown in Figure 12,
the green nodes and red edges are collected into the sub-graph,
while the remaining nodes and edges could be neglected.

For the initial solution, the lane-changing points for each vehicle
are determined randomly. The priority sequences of lanes are all
initialized in the increasing order of the given earliest arrival time of
the vehicles. As a consequence, there will be no cycles or deadlocks
at the beginning.

Keeping
Lanes

Exit
Lanes

Figure 12: The path for the vehicle for the current solution.

3.3 Cost Evaluation

After extracting a solution (i.e. a sub-graph) from the constraint
graph, we can compute its cost (i.e. the longest arrival time). First,
we add a “psuedo-source” node s. For each vehicle A;, we add an
edge from s to the first node of A; with weight being the earliest
arrival time of A;. As the traveling time, separating time, and the
earliest arrival time of vehicles are all included in the extracted
graph via directed edges, the longest path from s to each node is
the minimum time required for the corresponding vehicle traveling
to that node. Thus, among all the longest paths from s to the last
nodes of vehicles, the length of the longest one is the longest arrival
time.

Although finding the longest path on a general graph could be
NP-complete, the cost evaluation procedure could be finished in

Introduction to Intelligent Vehicles, Fall 2021, NTU

TS S

SSs TSS

Priority sequence: A;> A,> As

Figure 13: The priority order of the first lane and the direction of
the corresponding same-lane separating edges.

Table 1: Experimental results.

N Our Algorithm First-Come-First-Serve
Cost | Runtime (s) [[Cost | Runtime (s)

8 13.535 0.02 14.317 0.01

12 || 18.238 0.03 23.105 0.01

16 || 23.180 0.03 23.226 0.01

20 || 27.572 0.04 31.529 0.01

polynomial time as the extracted graph is a directed-acyclic-graph
(DAG). In a DAG, we first perform topological sort for the nodes, and
the longest path from a source node to each node could be computed
one by one following the topological order. The complexity is of
O(MN 2), where M is the number of discrete points on each lane,
and N is the number of vehicles.

3.4 Simulated Annealing

We apply simulated annealing to optimize the solution. For each
permutation, we could perform one of the two following operations:
(1) modifying lane-changing points for a vehicle and (2) swapping
the priority of two vehicles in the priority sequence of a lane. For
the first operation, we randomly select a vehicle and determine
its lane-changing points. For the second operation, we randomly
select a lane and an index i, then swap the priorities of the i-th
and the i + 1-th vehicles in the lane’s priority sequence. Then, the
directions of corresponding constraint edges may be reversed.

Note that the second operation may cause deadlock. Hence, we
must assure that at least one of the two vehicles comes from a
different lane. Otherwise, it’s impossible for the rear vehicle to pass
the front one. Besides, if we are going to change the priority for
vehicle A; and vehicle A, for all the node pairs (i, b, k) and (j, h, k)
(k =1,2,..., M) onlane h, we need to check if there exists some other
node (i, h’, k) on other lanes connecting to both nodes through
cross-lane separating constraint edges, as cycles may occurs in such
situation.

4 EXPERIMENTAL RESULTS

The algorithm is implemented in the C++ programming language,
and evaluated on a Linux environment. Following the settings in
some previous works [1-3], we set Tst = 10/(M — 1), Ter =
15/(M = 1), Tss = 1, and Tcs = 2. The intervals between ear-
liest arrival time of vehicles follow an exponential distribution.
The incoming lanes and whether to exit of vehicles are generated
randomly and uniformly.

Table 1 shows our experimental result. We set M = 6, 3 inner
lanes and 2 exit lanes in the experiment. Our algorithm outperforms
the first-come-first-serve strategy in all the cases with different
number of vehicles. The runtime overhead of our algorithm is
subtle.

Kevin Kai-Chun Chang

5 CONCLUSION

In this work, we formulate the interchange management problem
and convert it onto the graph domain. Then, we propose a simulated-
annealing-based approach to solve the problem. Experimental result
shows that our method outperforms the first-come-first-serve strat-
egy.

Future work includes more thorough experiments and analyses
on our algorithm, the explorations and comparisons with previous
works, and the integration of different optimization methods into
our approach.

REFERENCES

[1] Shang-Chien Lin, Hsiang Hsu, Yi-Ting Lin, Chung-Wei Lin, Iris Hui-Ru Jiang,
and Changliu Liu. 2020. A Dynamic Programming Approach to Optimal Lane
Merging of Connected and Autonomous Vehicles. In 2020 IEEE Intelligent Vehicles
Symposium (IV). 349-356.

Shang-Chien Lin, Chia-Chu Kung, Lee Lin, Chung-Wei Lin, and Iris Hui-Ru Jiang.
2021. Efficient Mandatory Lane Changing of Connected and Autonomous Vehicles.
In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). 1-7.

Yi-Ting Lin, Hsiang Hsu, Shang-Chien Lin, Chung-Wei Lin, Iris Hui-Ru Jiang,
and Changliu Liu. 2019. Graph-Based Modeling, Scheduling, and Verification for
Intersection Management of Intelligent Vehicles. 18, 5s (2019).

N,

=

	Abstract
	1 Introduction
	2 System Modeling and Problem Formulation
	2.1 System Modeling
	2.2 Problem Definition

	3 Proposed Algorithm
	3.1 Constraint Graph Construction
	3.2 Solution Extraction
	3.3 Cost Evaluation
	3.4 Simulated Annealing

	4 Experimental Results
	5 Conclusion
	References

