
2020 Fall DC Lab Final Project -
HDR and Low Light Enhancement

Team 07

林亮昕
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

b07901100@ntu.edu.tw

張凱鈞
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

b07901056@ntu.edu.tw

馬健凱
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

b07901108@ntu.edu.tw

Abstract—In this final project, we implement an High Dynamic
Range (HDR) Imaging algorithm on DE2-115 board. In addition
to HDR, our work also performs well for low light image
enhancement. Moreover, the whole computation time for one
HDR imaging process of our work is less than 1 second, which
is about 50 times faster than running the similar algorithm with
software.

Index Terms—high dynamic range imaging (HDR), low-light
image enhancement, image processing, FPGA, DE2-115

I. INTRODUCTION

A. Equipment Setup

Fig. 1: The monitor on the left is connected to Altera DE2-
115 through VGA, while the desktop is connected to the FPGA
board through the RS232 cable.

B. User Manual

1) How to Compile:
1) Modify the IMAGE NUMBER in the first line
of RS232.sv to the number of input images.
2) Open a new Quartus project, add the .sv
source files (DE2 115.sv, Wrapper.sv, RS232.sv,
Global tone.sv, VGA.sv, Global recover.sv), the
.sdc file (DE2 115.sdc), and the synthesis files
(final 0101 qsys.v, final 0101 qsys.qip), then compile.

2) Input Image Preprocessing: The present work supports
only 640x480 grayscale images, so input generation from
opencv package in Python is suggested.

3) Parameter Settings: The shutter speed parameters are
determined by the 18 switches on the board. From the left,
every three switches stand for the shutter speed for an input
image. (That is, SW[17:15] stands for the first input image,
SW[14:12] stands for the second input image, and so on)
Basically, we have six shutter speed options: 0 for 1/4000
second, 1 for 1/2000 second, 2 for 1/1000 second, 3 for 1/500
second, 4 for 1/250 second, and 5 for 1/125 second. (For
example, if you want to input two images with shutter speeds
1/2000 second and 1/250 second respectively, you need to
modify SW[17:15] to 001 and SW[14:12] to 100)

4) Image Transfer with RS232: After programming the
board, users are required to modify line 24 to 32 of the
pc python/rs232.py to the file path of input images. Then, reset
the board (Press KEY3) and check the switches on the board
before running the Python file. Finally, run the python code
by the command python rs232.py COMx, where x is the port
number of the RS232. Note that python2 is recommended.

5) Error Handling: Some errors may occur during data
transfer, such as long pauses. Re-plugging the RS232 cable,
resetting the board and restarting the Python program may
solve the problem.

C. High Dynamic Range (HDR) Imaging

In High Dynamic Range (HDR) Imaging, several digitalized
images of the same scene but with different amount of
exposure are input. Then, HDR Imaging wil find out the
response function of the imaging process. Eventually, with
the response function, a single HDR photograph whose pixel
values are proportional to the true radiance values in the scene
is recovered and output.

II. ALGORITHM

Our algorithm is based on [1] which provided a classical
high dynamic range image recovering method.



A. Response Function

The film reciprocity equation can be written as:

Zij = f(Ei∆tj) (1)

, where Ei is the irradiance value of pixel i, ∆tj is the
exposure time of image j, and Zij is the digital value of
pixel i in image j. Then, we assume that f is monotonic and
invertible, thus we can infer further:

f−1(Zij) = Ei∆tj

lnf−1(Zij) = lnEi + ln∆tj

g(Zij) = lnEi + ln∆tj (2)

Therefore, the problem becomes the recovering of function g.
It can be formulated as minimizing the objective function:

O =

N∑
i=1

P∑
j=1

[g(Zij) − lnEi − ln∆tj ]
2 + λ

Zmax−1∑
z=Zmin+1

g
′′
(z)2

(3)

Thus, it becomes a linear least square problem. Note that the
second term is a smoothness term on the sum of squared values
of the second derivative of g to ensure that the function g
is smooth. Moreover, a weighting function is introduced to
emphasize the smoothness and fitting terms toward the middle
of the curve:

w(z) =


z − Zmin, for z ≤

1

2
(Zmin + Zmax)

Zmax − z, for z >
1

2
(Zmin + Zmax)

(4)

And the function (3) becomes:

O =

N∑
i=1

P∑
j=1

w(Zij)[g(Zij) − lnEi − ln∆tj ]
2

+ λ

Zmax−1∑
z=Zmin+1

w(z)g
′′
(z)2 (5)

B. HDR radiance map

After obtaining the response function, and from the given
digital values and exposure times, we can recover the irradi-
ance value by:

ln Ei =

∑P
j=1 w(Zij)(g(Zij) − ln∆tj)∑P

j=1 w(Zij)
(6)

C. Low Light Image Enhancement

The HDR algorithm recovers the ”true” irradiance values
of pixels from given digital values. Thus, it’s suitable for en-
hancing low light images whose digital values are compressed
into a small range. The HDR algorithm can renormalize the
pixel values to a larger range and thus humans are able to
distinguish the objects in the dark part.

III. HARDWARE IMPLEMENTATION

A. Hardware flow

1) Input images are transferred via RS232 from PC to DE2-
115. The transfer starts from the first pixel of the first
image, and then the first pixel of the second image, until
the first pixel of the last image. Then these first pixels of
each image are sent to Global Recovery module to do
further computing, and eventually stored to the SRAM.
The next pixels are transferred at the same time until all
the 640*480 pixels are transferred.

2) Secondly, Global Tone Mapping module reads from
SRAM pixel by pixel, finishes radiance mapping, and
writes the HDR result back into SRAM.

3) Finally, the result stored in SRAM are output to monitor
via VGA.

Fig. 2: Hardware flow (N is the number of input images)

B. Solving response function

Our first challenge is to derive response function. In the soft-
ware implementation, the response function can be obtained
by solving linear equation according to the pixel value and
exposure time of origin images[1]. We will illustrate our three
different attempts in the following sections.

1) First Attempt–Gaussian Elimination: We first tried to
solve the linear equation using Gaussian Elimination to obtain
response function. However, we found out that the correspond-
ing matrix for linear equation size has at size least 256*256.
Besides, the matrix is sparse and thus increase the difficul-
ties of finding pivot, exchange row, normalize operations in
Gaussian elimination. Therefore, we moved onto our second
attempt.

2) Second Attempt–Iterative Method: Since the matrix is
sparse, we might able to solve using iterative method such as
Jacobi method or conjugate gradient. Nevertheless, we failed
again since the iteration process won’t converge to our desire
solution if using fixed point data. Thus we moved onto our
third attempt.

3) Final Attempt–Memorizing: It seems that solving re-
sponse function from the linear equation is an unfriendly
process for our FPGA. Fortunately, if we assume that the
response function is physically determined by image sensors



and should not vary between different pictures took by same
devices, then we can just memorize the response function in
the registers or memory directly. The chart below compares the
response functions between different image sets took by the
same device, Sony α6000. We can see that they are nearly the
same and thus the assumption is reliable in the real world. In
our hardware implementation, we store our response function
in a register file to realize the HDR algorithm.

Fig. 3: The response functions between different images took
by Sony α6000.

C. Core implementation

The core implementation is straightforward(equation[...]).
In global recovery, RS232 transfer pixels and image number
to its input. The radiance values(logarithm scale) is then
reconstructed by response curve table(a register file). We will
average the radiance value in different images with weighting
function and find the maximum and minimum of the average
radiance values. Finally, we store all datas into SRAM. The
hardware of global response is illustrated below. In global

Fig. 4: Hardware of global recovery

tone mapping, we try to map the radiance value to an pixel
value with range 0 to 255. We will first normalize the radiance
value(logarithm scale) using max-min normalization to range
0 255. Then the radiance value will be raised to a power of
2 by exponential table and be normalized again. Finally, we
will derive our display value.

Fig. 5: Hardware of global tone mapping

IV. PERFORMANCE

A. Time Comparison
We timed the recovery process of the Python module, and

it took more than 30 seconds. However, our board took less
than a second after data transfer. We verified our result by the
formula below:

60 cycles ∗ (480 ∗ 640 pixels) / 25 MHz = 0.737 s (7)

B. Experimental Result
From our result Fig. 6b, our algorithm not only increases the

brightness of the darker images, but also preserves the details.
For results Fig. 7b and Fig. 8b, the detail of the dark part of
the images become much clearer.

(a) Input

(b) Output

Fig. 6: High dynamic range result

V. FUTURE WORK

1) Transfer: Our current bottleneck is the transfer time
(about 27 seconds per image), which is much longer than the
computation time (less than 1 second). Therefore, if we can
replace RS232 with some other faster transfer method, such as
USB or SD card, the whole operation time could be decreased
to less than 10 seconds. If the transfer speed is high enough,
video processing may also be available.

2) Full Color Image Processing: The HDR algorithm is
actually the same for full-colored images. Thus, we only have
to do subtle modification on our hardware flow and memory
accessing strategies.

3) Real-time Image Processing: To achieve real-time image
processing, we can use the DE2-115 camera (TRDB D5M) to
capture images and directly input to the computing modules.



(a) Input

(b) Output

Fig. 7: Low light image enhancement - 1

(a) Input

(b) Output

Fig. 8: Low light image enhancement - 2

REFERENCES

[1] Debevec, Paul E. and Malik, Jitendra, ”Recovering High Dynamic Range
Radiance Maps from Photographs”. Proc. of the 24th Annual Conference
on Computer Graphics and Interactive Techniques, pp.369–378, 1997,
doi:10.1145/258734.258884

[2] J. Arias-Garcı́a, C. H. Llanos, M. Ayala-Rincón and R. P. Jacobi, ”A
fast and low cost architecture developed in FPGAs for solving systems
of linear equations,” 2012 IEEE 3rd Latin American Symposium on
Circuits and Systems (LASCAS), Playa del Carmen, 2012, pp. 1-4, doi:
10.1109/LASCAS.2012.6180336.

[3] Altera DE2-115 User Manual
https://www.intel.com/content/dam/altera-
www/global/en US/portal/dsn/42/doc-us-dsnbk-42-1404062209-de2-
115-user-manual.pdf

[4] Fpga的vga顯示設計
https://www.itread01.com/content/1549104121.html


