Runtime Monitoring on Real-World Embedded Systems in
Simulator-Free Environments

Kai-Chun Chang, Aniruddha Joshi, Charles Cai
Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, USA
kaichunchang, aniruddhajoshi, charles_cai@berkeley.edu

ABSTRACT

In this work, we explore runtime monitoring on a real-world em-
bedded system. We consider a Simplex structure and focus on the
training of the monitor. As the simulators are not always available
in real-world applications, large sim-to-real gaps occur and thus
degrades the quality of the monitor. To address this challenge, we
propose a two-stage framework. In the first stage, we construct a
simulation environment, generate an RL controller and a safe con-
troller, and train the monitor in the simulator. In the second stage,
the monitor and the controllers are deployed to the real-world en-
vironment. Then, we can collect training data from the real world
and polish the monitor accordingly. In the experiments and demos,
the effectiveness of our system is validated.

KEYWORDS

Runtime monitoring, embedded system, sim-to-real gap, reinforce-
ment learning

1 INTRODUCTION

Machine learning (ML) components are increasingly integrated into
autonomous systems to improve perception, planning, and control.
However, achieving a balance between safety and performance
can be challenging. To address this, the use of runtime monitors is
growing in popularity to ensure system safety, particularly learning-
based runtime monitors for cyber-physical systems.

In monitor training, simulators often play an important role.
However, when it comes to real-world settings, simulators may not
always be available. Creating simulators relies on assumptions and
can be time-consuming, leading to sim-to-real gaps. To address this
challenge, we propose gathering real-world data and training the
monitor accordingly. This approach demonstrates the feasibility of
developing high-quality monitors for real-world applications even
if simulators are not perfect.

2 PROBLEM SETTINGS
2.1 Problem Formulation

We consider the Simplex architecture [6], as illustrated in Figure 1.
In a Simplex architecture, two kinds of controllers are integrated.
An advanced controller aims to maximize the performance of the
system with less concern about safety. On the other hand, a safe
controller tries to satisfy the safety specification of the system and
thus sacrifices performance a lot. To balance safety and perfor-
mance, a monitor is adopted to determine which controller to use
at each time step. For example, if the system is about to run into
unsafe regions, the monitor will select the safe controller to ensure
safety. Otherwise, the monitor will choose the advanced controller
to profit from its aggressiveness.

Kai-Chun Chang, Aniruddha Joshi, and Charles Cai contributed equally.

Safe
Controller

Monitor

Advanced
Controller

Plant

Figure 1: The Simplex architecture.

[TargetRegion @ Unsafe Region

Robot

Figure 2: The robot navigation scenario.

In this work, we focus on the learning of the monitor in the
Simplex architecture. Formally, our problem can be defined as fol-
lowing:

e Inputs: A safe controller and an advanced controller.
e Outputs: A learning-based monitor.
e Objective: The goal of the monitor is to optimize the overall
performance and guarantee the safety for the system.
The details regarding the generation of the input safe controller
and the advanced controller are described in Section 3.

2.2 Our Scenario

In this work, we consider a robot navigation task, as depicted in
Figure 2. The objective for the robot is to reach a designated target
region (the green region) while avoiding unsafe regions (the red
circles). The locations of these regions are randomly established at
the beginning. In this task, the performance of our framework can
be defined as the time taken for the robot to reach the target region.
On the other hand, entering an unsafe region can be viewed as a
safety violation.

3 OUR FRAMEWORK
3.1 Overview of Our Framework

Figure 3 shows our framework. In the simulator, we first construct
the simulation environment and make it aligned with the real-
world environment. After that, we can train our advanced controller

EECS 149/249A, December 14, 2023, UC Berkeley

Simulator

| Simulation Environment Construction |
1 v
| RL Controller Training | | Safe Controller Building |
I

1
RL Policy gy () Safe Policy Ttsqse ()

| Monitor Training |

RL Pollcy gL (s) || Safe Pollcy Tsare(S) Iion’_t%%"—l

Deployment to the Real World

!
Real World

| Real-World Training Data Collection |

!

| Real-World Monitor Training |

Figure 3: Our framework.

(we adopt an RL-based controller in this work) and build our safe
controller within the simulation environment. Once the RL policy
nrr (s) and the safe policy 74, . (s) are derived, we can generate a
bunch of trajectories from the controllers as the training data for
the monitor and perform monitor learning accordingly.

After the monitor Mjs;y, is generated, we can deploy the monitor
along with the two controllers 7gy (s) and 7z, f (s) to the real world.
Then, we can collect trajectories directly from the real world as
new training data, which can be leveraged to polish the monitor.
Finally, our framework generates a monitor M,.,,; that is based on
not only the simulation data but also the real-world trajectories.

3.2 Simulation Environment

We adopt Webots [1][4] as our simulator, as illustrated in Figure 4.
This platform provides a user-friendly interface for simulating
robotic scenarios, enabling the seamless integration of various ob-
stacles (depicted as red circles) and a designated target region (il-
lustrated by the green rectangle). Webots offers a diverse selection
of robot models, facilitating the replication of our physical robot
within the virtual environment. Moreover, the simulator allows for
the random initialization of the positions and orientations of robots,
obstacles, and target regions at the beginning of each simulation.
This feature streamlines the process of training RL controllers, gath-
ering trajectories for monitor learning, and conducting verification
for our system.

3.3 Safe Controller

To realize our safe controller, we adopt the rapidly exploring random
tree (RRT) algorithm [2, 3], which is a one of the most common robot
path planning algorithms. The RRT algorithm starts growing a tree
from the initial position. In each iteration, it randomly samples a
new point in the searching space and connects it to the nearest point
in the tree. If there exists no obstacle on the connection path, the
new point is included to the tree. The algorithm continually grows
the tree until a point within the target region or a searching limit
is reached. Figure 5 illustrates an example of the RRT algorithm.
The starting point is (0, 0), and the target point is (6, 10). The blue

Kai-Chun Chang, Aniruddha Joshi, Charles Cai

‘Simulation View

0 @ © @ B O o068 -00x M P > B O O E <

Figure 4: The Webots simulator.

14 4

121

O

-2 T T T T
0 5 10 15

Figure 5: An example of the RRT algorithm.

circles represents the obstacles. The line segments compose the tree
maintained during the path searching, where the red ones denote
the path found. Although the RRT algorithm is not optimal, it’s
relatively fast and easy to implement, making it suitable for real-
world embedded system applications. In our experiments, we utilize
the PythonRobotics [5] library to implement the RRT algorithm.

3.4 Reinforcement Learning-based Controller

We first used the PPO algorithm in the simulator. where we were
trying to actuate the wheels of the robot using inputs as position
of the robot, orientation of robot, position of the target, and the
position of the unsafe regions, but we were unable to acess orien-
tation of robot through lidar, as there were specific angles which
created problems . So we switched to having inputs as the position
of the robot, the position of the target, the position of the unsafe
regions, and the radius of the unsafe regions. The output space here
is the x and y coordinates of the next waypoint. We trained the RL
controller using DDPG algorithm with an available implementation
of deepbots. We randomized the initial position of the robot and
the position of the unsafe regions in the environment. We get the
following plot of returns, we observe that the dips are because after
changing the initial position, and the rewards increase when the
inital state is unchanged.

https://github.com/aidudezzz/deepbots

Runtime Monitoring on Real-World Embedded Systems in Simulator-Free Environments

Episode scores over episodes

200

100

—100 I

episode score

—200 T I I

—300 1

—400 1

T T T T T T
0 500 1000 1500 2000 2500 3000
episode

Figure 6: Caption

Position of Robot

N Cable
Monitor Iy

i

H
i Localization

RL Safe
Controller | | Controller e

- - -
Next Waypoint - -
‘@ Lioar B taptop

Waypoint / Current State

Robot

Figure 7: The hardware configuration.

The networks of the actor and the critic are with 3 hidden layers
where the first is contains 30 the second contains 50 and the third
contains 30 neurons.

3.5 Monitor

We trained the monitor using supervised learning, where we first
collect data using the RL controller in the simulator environment,
then we process the data such that we add a column that determines
whether there is violation within 5 timesteps, and train a network
on this data.

4 HARDWARE CONFIGURATION
4.1 Overview of the Real-World Environment

Figure 7 depicts our hardware configuration. We use a LiDAR for
robot localization. The LiDAR transmits robot positions to the lap-
top via a cable. Subsequently, the laptop performs path planning for
the robot using our generated monitor and controllers. If the moni-
tor identifies an imminent safety violation, it switches to the safe
controller and determines a safe waypoint. Otherwise, the RL con-
troller is engaged to compute the next waypoint. Once generated,
the laptop transmits the waypoint, along with the robot’s position,
to the robot via Bluetooth. The robot, in turn, autonomously exe-
cutes low-level control. This involves initial rotation to align with
the new waypoint, leveraging data from its built-in gyroscope’s
yaw angle. Following alignment, the robot propels itself towards
the designated waypoint until the distance falls below a predefined
threshold.

EECS 149/249A, December 14, 2023, UC Berkeley

Figure 8: The Pololu Robot.

4.2 Robot

Our selected robotic platform for real-world deployment is the
Pololu RP2040 3pi+, serving as the primary agent. We leverage the
graphical user interface (GUI) implemented through MicroPython
directly on the robot. To enhance the efficacy of LIDAR-based local-
ization and orientation detection, a flat board has been affixed atop
the robot, as whown in Figure 8. This augmentation facilitates the
LiDAR system in efficiently detecting and determining the robot’s
spatial location and facing orientation.

4.3 LiDAR and Localization

We employ YD-LiDAR as the primary sensor for ascertaining the
precise location information of the robot. Our data acquisition
involves obtaining feedback in the form of a tuple (distance, angle)
representing the measurements of the two edges of a flat board
affixed to the robot. Subsequently, we utilize this data to compute
the accurate positions of the robot.

4.4 Wireless Communication

We utilize the HC-05 module for Bluetooth connection, serving as
the receiving component integrated into the robot. Data transmis-
sion occurs through UART communication via GPIO Pins. During
data transfer to the robot, a comprehensive string is transmitted,
encompassing essential information such as the current location
coordinates, waypoint coordinates, and a flag indicating whether
the monitor is switching between controllers.

5 EXPERIMENTAL RESULTS
5.1 Effectiveness of Our Framework

As our hardware setting is not quite stable now, we have not been
able to perform real-world data collection and monitor training.
Thus, the following experimental results are all based on the moni-
tor trained in the simulator, i.e., Msjm,.

Table 1 shows the performance of the controllers and the moni-
tor in the simulation environment. We consider three settings: only
safe controller, only RL controller, and the Simplex architecture
(i.e., monitor with the two controllers). For each settings, we per-
form 1000 simulations and collect the simulation results, where the
positions of the obstacles are randomized in each simulation. The
average reaching time is the average number of timesteps the robot
needs to reach the target among all the simulations. The safe rate
denotes the ratio of the simulations where the robot doesn’t enter
any obstacle before it achieves the target.

EECS 149/249A, December 14, 2023, UC Berkeley

Table 1: Our experimental results in the simulation environment.

l Settings H Average Reaching Time | Safe Rate ‘
Only Safe Controller 440.45 95.0%
Only RL Controller 301.29 19.9%
Simplex Architecture 425.38 95.3%

Figure 9: The decision diagram.

As expected, the safe rate of the safe controller is very high,
but it’s also the most conservative one and thus takes the longest
average reaching time. On the other hand, the RL controller is much
more aggressive and efficient, while it suffers a lot safety violations.
Our Simplex architecture maintains a similar safe rate as the safe
controller. Moreover, it also improves the average reaching time
compared to the safe controller, indicating that it benefits from the
aggressiveness of the RL controller.

5.2 Analysis of the Monitor

In our experiment, we have observed that the monitor selects the
safe controller most of the time, thus the average reaching time of
our Simplex architecture only improves a subtle margin from the
safe controller. To further analyze the behavior of the monitor, we
utilize the tool developed in [7]. We get only one decision diagram
here. We used nodes of the decision diagram as distance between
robot and target < radius, and 5 nodes for distance between robot
and the five unsafe regions. It gives only this decision diagram.

5.3 Real-World Experimental Results

The video in this [link] and Figure 10 show an example of the
behavior of the RL controller in the real world. As the experimental
results in the simulator, it aggressively heads toward the target
region, but it also violates the safety constraints during its way.
On the other hand, the video in this [link] and Figure 11 show the
behavior of our monitor with the two controllers, which safely
direct the robot toward the target region.

6 CONCLUSION

In this work, we explore the Simplex architecture on a robot naviga-
tion scenario. We generate a robust safe controller and an efficient
RL controller, and we also develop a learning-based monitor. In
the simulation environment, our Simplex system can maintains a
similar safe rate as the safe controller, while improving the robot
reaching time simultaneously. We also successfully deploy our sys-
tem onto the Pololu robot and perform runtime monitoring in the
real-world environment. The monitor shows its effectiveness in the
real world under some instances.

Future work includes realizing the real-world training data col-
lection and the real-world monitor training flow, so that we can
leverage the real-world data to polish our learning-based monitor.
In addition, we can introduce falsification techniques into our flow,

Kai-Chun Chang, Aniruddha Joshi, Charles Cai

generate falsified cases for our monitors, and improve the monitor
accordingly.

REFERENCES

[1] Cyberbotics Ltd. 1998. Webots. http://www.cyberbotics.com. Open-source Mobile
Robot Simulation Software.

[2] Sertac Karaman and Emilio Frazzoli. 2010. Incremental sampling-based algorithms
for optimal motion planning. Robotics Science and Systems VI 104, 2 (2010), 267
274.

[3] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research 30,7 (2011), 846-894.

[4] O. Michel. 2004. Webots: Professional Mobile Robot Simulation. Journal of
Advanced Robotics Systems 1, 1 (2004), 39-42. http://www.ars-journal.com/
International-Journal-of- Advanced-Robotic-Systems/Volume- 1/39-42.pdf

[5] Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin Raffin,
and Alexis Paques. 2018. PythonRobotics: a Python code collection of robotics
algorithms. arXiv:1808.10703 [cs.RO]

[6] Lui Sha, Ragunathan Rajkumar, and Michael Gagliardi. 1996. Evolving dependable
real-time systems. In 1996 IEEE Aerospace Applications Conference. Proceedings,
Vol. 1. IEEE, 335-346.

[7] Hazem Torfah, Shetal Shah, Supratik Chakraborty, S Akshay, and Sanjit A Seshia.
2021. Synthesizing pareto-optimal interpretations for black-box models. IEEE.

https://drive.google.com/file/d/1BIvnMTsOr1xz4W6m0ovfJunAnLqpBisV/view?usp=sharing
https://drive.google.com/file/d/1LOAnH2fhUHMe-I_es1E-keIUjBGZEJ71/view?usp=sharing
http://www.cyberbotics.com
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
https://arxiv.org/abs/1808.10703

EECS 149/249A, December 14, 2023, UC Berkeley

Runtime Monitoring on Real-World Embedded Systems in Simulator-Free Environments

Grew

Figure 11: The real-world experimental result of our Simplex architecture.

	Abstract
	1 Introduction
	2 Problem Settings
	2.1 Problem Formulation
	2.2 Our Scenario

	3 Our Framework
	3.1 Overview of Our Framework
	3.2 Simulation Environment
	3.3 Safe Controller
	3.4 Reinforcement Learning-based Controller
	3.5 Monitor

	4 Hardware Configuration
	4.1 Overview of the Real-World Environment
	4.2 Robot
	4.3 LiDAR and Localization
	4.4 Wireless Communication

	5 Experimental Results
	5.1 Effectiveness of Our Framework
	5.2 Analysis of the Monitor
	5.3 Real-World Experimental Results

	6 Conclusion
	References

