
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Multi-Corner Timing Macro Modeling With Neural
Collaborative Filtering From Recommendation

Systems Perspective
Kevin Kai-Chun Chang, Guan-Ting Liu, Chun-Yao Chiang, Pei-Yu Lee, and Iris Hui-Ru Jiang

Abstract—Timing macro modeling has been widely employed1

to enhance the efficiency and accuracy of parallel and hierarchi-2

cal timing analysis. However, existing studies primarily focused3

on generating an accurate and compact timing macro model4

for single-corner libraries, making it difficult to adapt these5

approaches to multi-corner situations. This either incurs sub-6

stantial engineering effort or results in significant performance7

degradation. To tackle this challenge, we offer a fresh per-8

spective on the timing macro modeling problem by drawing9

inspiration from recommendation systems and formulating it as10

a matrix completion task. We propose a neural collaborative11

filtering-based framework capable of capturing the convoluted12

relationships between circuit pins and timing corners. This frame-13

work enables the precise identification of timing variant regions14

across different corners. Additionally, we design several training15

features and implement various training techniques to enhance16

precision. Experimental results show that our framework reduces17

model sizes by more than 10% compared to state-of-the-art18

single-corner approaches, while maintaining competitive tim-19

ing accuracy and exhibiting significant runtime improvements.20

Furthermore, when applied to unseen corners, our framework21

consistently delivers superior performance, demonstrating its22

potential for use in off-corner chiplets in a heterogeneous23

integration system.24

Index Terms—Matrix completion, multiple corners, recommen-25

dation systems, timing macro modeling.26

I. INTRODUCTION27

AS THE design complexity continues to grow rapidly,28

timing analysis has become a significant bottleneck of the29

IC design flow. To address this issue, parallel and hierarchical30

timing analysis is widely adopted, which heavily relies on31

timing macro modeling. As shown in Fig. 1(a), a large design32

is first partitioned into several blocks; each block is then33

analyzed once, and a corresponding timing macro model is34

Manuscript received 14 August 2023; revised 7 January 2024; accepted
6 March 2024. This work was supported in part by the National Science and
Technology Council, Taiwan. This article was recommended by Associate
Editor E. R. Keiter. (Corresponding author: Iris Hui-Ru Jiang.)

Kevin Kai-Chun Chang is with the Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, Berkeley, CA
94720 USA.

Guan-Ting Liu is with NVIDIA Research Taiwan, Taipei 114066, Taiwan.
Chun-Yao Chiang is with Synopsys Inc., Taipei 110208, Taiwan.
Pei-Yu Lee is with Synopsys Inc., Hsinchu 300093, Taiwan.
Iris Hui-Ru Jiang is with the Graduate Institute of Electronics Engineering,

National Taiwan University, Taipei 106319, Taiwan (e-mail: huirujiang@
ntu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2024.3383350

Fig. 1. Flows of timing macro modeling. (a) Single-corner flow. (b) Multi-
corner flow. The circuit is the NVIDIA GH100 GPU quoted from [7].

generated to encapsulate the timing properties of the block. 35

Subsequently, the timing macro model can be reused for the 36

same blocks and thus expedites the timing analysis process. In 37

order to generate an accurate and concise timing macro model, 38

timing variant pins (whose timing is affected by primary input 39

(PI) slews or primary output (PO) loading) in a design should 40

be preserved for accuracy, and timing invariant pins can be 41

reduced for compactness. 42

Numerous timing macro modeling approaches have been 43

proposed in the literature. Most of the approaches are algo- 44

rithmic, employing a variety of graph-based algorithms during 45

the extraction of timing macro models [1], [2], [3], [4], [5]. 46

In contrast, we present a novel machine learning-based 47

framework in [6]. By incorporating graph neural networks 48

(GNNs), our framework effectively captures timing variant 49

pins, and achieves timing accuracy comparable to state-of- 50

the-art algorithmic methods while reducing the model size 51

by 10%. Furthermore, our GNN-based framework can easily 52

be applied to various timing analysis models and modes. 53

With the advancement of semiconductor technology, the 54

timing analysis flow now encompasses the verification of 55

numerous PVT corners (combinations of process, voltage, 56

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4554-3442

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

and temperature parameters) [8]. To ensure that accurate57

timing analysis can be performed quickly for all the corners,58

it is crucial to generate a dedicated timing macro model59

for each corner, as illustrated in Fig. 1(b). However, the60

aforementioned previous work, including our GNN-based61

framework, has mainly focused on single-corner timing macro62

modeling, making it difficult to extend to multi-corner scenar-63

ios. Accomplishing this either demands substantial engineering64

efforts or results in timing macro models with diminished65

accuracy and large sizes. The challenges become even more66

pronounced when conducting timing analysis on off-corner67

chiplets, where single-corner approaches are rendered imprac-68

tical due to the absence of characterized libraries.69

The main challenge of multi-corner timing macro modeling70

lies in accurately identifying the difference of timing vari-71

ance on pins for each corner. This is a critical factor in72

achieving compact model sizes and high-timing accuracy.73

To tackle this challenge, we formulate the identification74

problem as a matrix completion task and utilize principles75

from recommendation systems. We introduce the concept76

of collaborative filtering, which effectively captures simi-77

larities between pins and utilizes observed data to infer78

timing variability. Furthermore, we employ neural collab-79

orative filtering (NCF) to model the intricate interactions80

between pins and corners. Leveraging the neural network81

layers within the NCF model, we can grasp the complex rela-82

tionships inherent in the multi-corner timing macro modeling83

problem.84

The main contributions of this work are summarized as85

follows.86

1) To the best of our knowledge, our work is the first to87

address and formulate the multi-corner timing macro88

modeling problem.89

2) We offer a novel recommendation system-based perspec-90

tive for timing macro modeling and formulate it as a91

matrix completion problem. This allows us to effectively92

capture the relationship between pins and corners.93

3) We propose a NCF-based framework to learn the intri-94

cate pin-corner interactions. The NCF model not only95

achieves competitive timing accuracy and reduces macro96

model sizes by more than 10% compared to the state-97

of-the-art works in million-gate/instance-scale designs,98

but also demonstrates a 16X faster model training time.99

Additionally, the NCF model accelerates the training100

label generation process by 4.4X.101

4) Our framework consistently preserves exceptional102

performance when applied to unseen corners, demon-103

strating its potential for utilization in off-corner chiplets.104

The remainder of this article is organized as follows:105

Section II formulates the single-corner timing macro modeling106

problem, reviews the previous work on single-corner tim-107

ing macro modeling, and details our GNN-based framework108

proposed in [6]. Section III discusses the challenges and109

formulates the multi-corner timing macro modeling problem.110

Section IV details our multi-corner timing macro modeling111

framework. Section V shows experimental results. Finally,112

Section VI concludes this work.113

II. SINGLE-CORNER TIMING MACRO MODELING 114

A. Problem Formulation 115

In this work, we follow the problem formulation from TAU 116

2016 and 2017 contests [9], [10], which is also adopted by 117

most previous work. The single-corner timing macro modeling 118

problem can be defined as follows. 119

Given a circuit netlist (*.v files) along with its parasitics 120

(*.spef files) and the early and late cell libraries (*.lib files), 121

the goal is to generate a timing macro model that encapsulates 122

the timing behaviors of the design. 123

The generated timing macro model is evaluated based on 124

two primary criteria: 1) timing accuracy (the higher, the better) 125

and 2) the macro model size (the lower, the better). Note that 126

there exists a tradeoff between them. Furthermore, the runtime 127

required to generate the timing macro model is also crucial. 128

B. Previous Work 129

Interface logic models (ILMs) and extracted timing models 130

(ETMs) [1] are two pioneering single-corner timing macro 131

modeling approaches. ILM preserves circuit netlists from PI 132

or PO ports to the first level of registers (i.e., interface 133

logic) while eliminating register-to-register paths. In con- 134

trast, ETM consists solely of context-independent timing 135

arcs between external pins. Subsequent works often build 136

upon either of these two paradigms. Generally, ILM-based 137

approaches [2], [3], [4] achieve exceptionally high-timing 138

accuracy but suffer from larger macro model sizes. Conversely, 139

ETM-based approaches [5] can extract smaller macro models 140

at the expense of timing accuracy. Moreover, ETM-based 141

methods are suitable for IP-reuse scenarios, as they can 142

conceal circuit implementations, while ILM-based methods are 143

more adaptable to advanced timing analysis modes, such as 144

common path pessimism removal (CPPR). 145

For ILM-based approaches, LibAbs [2] and its following 146

work [4] propose several graph reduction techniques that are 147

applied alternately to timing graphs. This iterative process 148

results in a more concise timing macro model. iTimerM [3] 149

divides the circuit netlist into constant and variant timing 150

regions, where the constant timing region is eliminated to 151

achieve compactness. The separation is based on the propa- 152

gation of minimum/maximum slew values, designating pins 153

with stabilized slew ranges as constant. On the other hand, 154

ATM [5] builds upon the ETM paradigm. It also adopts 155

slew propagation to identify checkpoint pins, which are then 156

inserted into the ETM model to improve timing accuracy. 157

Fig. 2 summarizes the existing single-corner timing macro 158

modeling frameworks. 159

To facilitate analysis efficiency, the key objective of tim- 160

ing macro modeling is to strike a balance between timing 161

accuracy and the size of the generated timing macro model. 162

Nevertheless, previous work adopts some heuristic techniques 163

during their model extraction, which may cause degradation 164

on the solution quality. For instance, LibAbs [2], [4] applies 165

in-tree and out-tree graph reductions alternatively, based on 166

the observation on the timing arc forms of cells or nets. 167

Besides, some works need to set a threshold for variant pins 168

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 3

Fig. 2. Comparison of previous work and our framework.

identification, which requires considerable engineering effort,169

and the same threshold may not be applicable for various170

circuit designs. For example, iTimerM [3] uses a threshold171

to separate the variant regions with the constant region, and172

ATM [5] uses a threshold to determine which pins are dirty.173

Therefore, there is still room for improvement.174

C. Overview of Our GNN-Based Framework175

To overcome the deficiencies of prior work, we propose176

a GNN-based single-corner timing macro modeling frame-177

work [6]. GNNs have been developed to apply deep learning178

methods to graph data [11]. In a typical GNN scheme, node179

information is aggregated and transformed between neighbors180

recursively. After several neural network layers, a high-level181

representation of each node is extracted, which encapsulates182

the features and structures of the node’s neighborhood.183

There are several reasons that GNN is suitable for the timing184

macro modeling problem. First, the evaluation of timing criti-185

cality on circuit pins is usually challenging for heuristic-based186

methods. Nevertheless, graph-learning-based methods could187

capture implicit properties of circuit pins and thus evaluating188

timing importance more precisely. Second, the aggregation of189

node attributes in GNN is similar to the propagation of timing190

values on timing graphs, as shown in Fig. 3. Consequently, the191

timing properties of circuit pins could be captured and learned192

by GNN models smoothly. Third, due to the information193

exchange mechanism in GNN, the final representations of194

adjacent nodes tend to become similar. This property is desired195

in timing macro modeling since neighbor pins are usually of196

comparable degrees of timing criticality. Lastly, it is natural to197

represent circuit netlists by graphs, and thus GNNs could be198

easily embedded into the timing macro modeling framework.199

Fig. 4 illustrates the proposed timing macro modeling200

framework. In the first stage, the timing sensitivity (TS) of201

each circuit pin is evaluated to reflect the influence of each202

pin on the overall timing accuracy. Then, the training data is203

generated accordingly. In the second stage, we adopt GNN204

models to learn the properties of circuit designs and predict205

the timing sensitivities of testing data. Finally, starting from206

the ILM, timing macro models are generated based on our207

timing sensitivities prediction. Different from previous work,208

which mainly focuses on nonlinear delay model (NLDM),209

our framework could also be applied to other advanced node210

timing analysis models, such as CCS, AOCV, and POCV,211

or different timing modes like CPPR. The generality of our212

Fig. 3. Analogy between GNN aggregation and timing propagation. Timing
values, including slew, arrival time, and required arrival time are propagated
through edges (blue and green arrows). On the other hand, node features of
layer l, h(l)

i , are aggregated through edges and transformed into node features

of layer l+ 1, h(l+1)
i (red arrows).

Fig. 4. Overview of our GNN-based single-corner timing macro modeling
framework.

framework comes from the fact that timing sensitivities could 213

be adaptively evaluated depending on the given timing delay 214

model. Moreover, the GNN models could effortlessly capture 215

the corresponding timing properties. 216

D. Timing Sensitivity Data Generation 217

1) Timing Sensitivity: In order to generate a high-quality 218

timing macro model, we need to precisely evaluate the influ- 219

ence of each circuit pin on the timing accuracy of the whole 220

design. Then, pins with subtle influences could be waived to 221

reduce the model size, and meanwhile the timing accuracy will 222

not be degraded. 223

The lower section of Fig. 7 (highlighted by red dashed 224

lines) shows how we evaluate the TS of each pin. Given the 225

input circuit graph, we first randomly generate several sets 226

of boundary timing constraints. For each timing constraint, 227

we store the corresponding timing analysis results of ILM 228

as references. In the TS evaluation stage, we remove a pin 229

from the circuit each time. After the removal, we perform 230

timing propagation based on each set of boundary timing 231

constraints generated and compute the differences between 232

the current and the reference timing values (including slew, 233

arrival time (at), required arrival time (rat), and slack) at the 234

boundary pins. Finally, TS of a pin (for convenience, denoted 235

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. TS distribution of fft_ispd.

as Ai in the following discussion) is set as the average of236

timing value differences under the different timing constraints.237

Equations (1) and (2) define the TS of pin Ai, where B denotes238

the collection of generated boundary timing constraints, and239

slewb
P,before (resp. slewb

P,after) denotes the slew value of a240

boundary pin P under the timing constraint b before (resp.241

after) pin Ai’s removal. The definitions of �atbAi
, �ratbAi

, and242

�slackb
Ai

are similar to that of �slewb
Ai

243

TSAi = AVGb∈B

(
�slewb

Ai
+�atbAi

+�ratbAi
+�slackb

Ai

4

)
244

(1)245

�slewb
Ai
= 1

|PI ∪ PO|�P∈PI∪PO
slewb

P,after − slewb
P,before

slewb
P,before

. (2)246

2) Insensitive Pins Filtering: Although the TS evaluation247

flow could accurately compute the influence of each pin on248

the overall timing accuracy, running the flow for all the pins249

is time-consuming as we need to perform timing propagation250

once in each iteration. To enhance the efficiency, we first251

observe that the majority of the pins have extremely small252

or even zero TS. It is due to the nature of timing graph that253

most of the pins have subtle influences on the overall timing254

accuracy. For example, the TS distribution of circuit fft_ispd is255

shown in Fig. 5, where 70% pins have zero TS, while only few256

pins have large TS. Therefore, if we can find a rapid screening257

method to filter the insensitive pins first, we could perform TS258

evaluation flow on the potential critical pins only.259

Timing value difference propagation is a suitable method260

for insensitive pins filtering. At each PI or PO port, two timing261

values, tmin and tmax, are set up. We then propagate the timing262

values through the design and monitor the difference between263

the two timing values at each pin. According to the shielding264

effect, as shown in Fig. 6, the difference decays after several265

levels, and pins with small difference tend to have subtle266

influence on the overall timing accuracy. Inspired by previous267

works [3], [5], we choose slew to propagate from each PI.268

After the propagation, the slew difference (SD) at each pin is269

standardized, and pins with SD less than a threshold is filtered270

out. Fig. 7 illustrates the whole training data generation flow.271

E. GNN-Based Timing Macro Modeling272

1) GNN Model Training and Prediction: With the TS273

training data, GNN models could learn and predict accord-274

ingly. In this work, we adopt GraphSAGE [12] as our main275

GNN engine. For each node v, (3) first aggregates the node276

Fig. 6. SD and shielding effect.

Fig. 7. TS training data generation flow.

features from its neighborhood N (v), then (4) concatenates 277

and encodes the representation of node v with the aggregated 278

vector. In the experiments, only four rounds of aggregations 279

and encodings are performed, as the timing property of a node 280

is mostly influenced by its neighborhood. Other existing GNN 281

models, such as GCN [13] or even self-defined GNN models, 282

could also be embedded with our framework 283

hk
N (v)←− AGGREGATEk

(
hk−1

u ,∀u ∈ N (v)
)

(3) 284

hk
v ←− σ

(
Wk · CONCAT

(
hk−1

v , hk
N (v)

))
. (4) 285

We treat the GNN prediction as a classification problem and 286

convert the training labels of pins to {0, 1}. A pin’s label is set 287

to 1 if its TS is not zero. In addition, for CPPR mode, labels 288

of multiple-fan-out pins of clock networks are also set to 1, as 289

previous work, e.g., [14], suggests their importance for CPPR 290

calculation. 291

The training features are listed in Table I. The features 292

are all basic circuit properties which could be extracted 293

within linear time. Features beginning with “is” are of {0, 1} 294

Boolean values. For integer type features like level_from_PI, 295

level_to_PO, and out_degree, the values are normalized to 296

[0, 1] so that each feature have the same level of influences. 297

2) Timing Macro Model Generation: Fig. 8 details the 298

timing macro model generation stage. First, we construct the 299

initial timing graph and capture the interface logic netlist 300

to construct ILM. Second, we apply both serial and parallel 301

merging techniques to simplify the timing graph and retain 302

only the timing variant pins identified by the GNN model. For 303

serial merging, the delay of a merged edge is the sum of the 304

original ones, while the slew inherits the last edge. For parallel 305

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 5

TABLE I
TRAINING FEATURES

Fig. 8. Timing macro model generation.

merging, delay or slew is the minimum (resp. maximum) of the306

original edge values in the early (resp. late) mode. Afterward,307

we apply the lookup table index selection method proposed308

in [3], where indices that minimize the interpolation timing309

error are selected. Lastly, the timing macro model is generated.310

III. MULTI-CORNER TIMING MACRO MODELING311

A. Corner Explosion and Challenges312

With the continuous advances in the semiconductor industry,313

design verification now involves examinations under numer-314

ous PVT corners [8]. This rigorous verification process is315

essential to ensure the robustness of a design under possible316

operating conditions. Several approaches have been proposed317

to address the challenges associated with multi-corner timing318

analysis [15], [16], [17], [18], [19]. Nevertheless, none of319

the previous work has focused on multi-corner timing macro320

modeling. The groups of timing variant pins may vary a lot321

across different corners. Consequently, adapting the single-322

corner timing macro modeling frameworks mentioned in323

Section II to multi-corner settings presents significant engi-324

neering effort or leads to substantial performance degradation.325

For example, iTimerM [3] and ATM [5] need to fine-tune326

distinct thresholds for each corner. Similarly, although our327

single-corner timing macro modeling framework is applicable328

across different corners, users are still required to extract329

training data and train an exclusive GNN model for each330

corner. It becomes even more challenging when dealing with331

chiplets that deviate from typical corners. To the best of our332

knowledge, existing approaches lack feasibility in identifying333

timing variant pins without the presence of a characterized 334

corner library. 335

B. Problem Formulation 336

We extend the problem formulation of single-corner timing 337

macro modeling defined in Section II-A to encompass multi- 338

corner settings. The only differences are the input cell libraries 339

are now associated with a set of timing corners, and the 340

framework should generate a dedicated timing macro model 341

for each corner within the corner set or for each unseen corner. 342

IV. OUR MULTI-CORNER TIMING MACRO MODELING 343

FRAMEWORK 344

A. Problem Modeling 345

The primary challenge of the multi-corner timing macro 346

modeling problem lies in the precise identification of timing 347

variant pins for each corner. This allows us to build a compact 348

timing macro model for each corner while preserving high- 349

timing accuracy. To effectively tackle the issue of identifying 350

timing variant pins, we have discovered that it can be 351

approached from the perspective of recommendation systems 352

because the relationship between pins and corners resembles 353

the user-item relationship in recommendation systems. In the 354

context of recommendation systems, the goal is to capture 355

user-item interactions and provide personalized suggestions. 356

Likewise, in the multi-corner timing macro modeling problem, 357

our objective is to understand the interactions between pin 358

features and corner properties and determine whether a pin 359

is timing variant under a specific corner. By reframing the 360

problem in this manner, we can leverage the well-established 361

techniques from the field of recommendation systems to 362

improve the identification of timing variant pins. 363

A common approach to interpret user-item interactions is to 364

construct a user-item matrix, where each element represents 365

the relationship between the corresponding user and item [20]. 366

Then, it becomes a matrix completion problem that aims to 367

determine the missing entries based on known user-item inter- 368

actions. Similarly, we can formulate pin-corner relationships as 369

a matrix completion problem. Based on this formulation, our 370

framework has the potential to infer the variability of pins in 371

new designs or assess the degrees of variability under unseen 372

corners. 373

With this understanding, we can formally define the timing 374

variant pin identification problem in the context of matrix 375

completion, where each circuit pin serves as a user, and each 376

corner is considered an item. The pin-corner matrix Y ∈ R
M×N

377

for M pins and N corners is defined as 378

yAiCk =
{

1, if pin Ai is timing variant under corner Ck

0, otherwise.
379

(5) 380

Fig. 9 illustrates the modeling of the pin-corner matrix. The 381

goal of the matrix completion process is to determine whether 382

each element yAiCk is 0 (pin Ai is not timing variant under 383

corner Ck) or 1 (Ai is timing variant under Ck). 384

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 9. Visualization of a pin-corner matrix.

Fig. 10. Structure of the NCF network and data augmentation with mixup.

B. Collaborative Filtering385

To address the pin-corner matrix completion problem, we386

employ the concept of collaborative filtering, which identifies387

shared interests among users, such as the tendency of users,388

that purchase item A also purchase item B, and leverages this389

information to provide similar recommendations to users with390

similar preferences. This attribute is beneficial in the problem391

of multi-corner timing variant pin identification, as pins with392

similar properties often exhibit comparable levels of timing393

variability under the same corner.394

By employing collaborative filtering, we can express the395

interaction between the pin Ai and the corner Ck as a function396

of the pin embedding pAi and the corner embedding qCk397

ŷAiCk = f
(
Ai, Ck|pAi , qCk

)
(6)398

where f can represent any relationship between pin Ai and cor-399

ner Ck. The pin embedding pAi and the corner embedding qCk400

can be extracted feature vectors as described in Section IV-C.401

The interaction function f can be optimized by employing402

target functions that minimize the discrepancy between ŷAiCk403

and yAiCk , where yAiCk refers to the corresponding element in404

the pin-corner matrix as described in (5).405

C. Neural Collaborative Filtering (NCF) and Training406

Features407

Since the identification of timing variant pins involves many408

factors (e.g., topological complexity, operating condition), it409

is crucial to find an interaction function f that can capture410

nonlinear relationships between pin features and their timing411

variability under different corners. Thus, we employ the412

NCF model [20], which consists of fully connected neural413

TABLE II
CORNER FEATURES FOR TRAINING

network layers, as shown in Fig. 10. In contrast to simple 414

interaction functions, such as the inner product, the NCF 415

model demonstrates the potential to capture complex and 416

nonlinear relationships between pins and corners. 417

In our NCF model, each input vector consists of the pin 418

feature vector pAi and the corner feature vector qCk . For 419

pin features, we adopt the same circuit topology features 420

as our single-corner timing macro modeling framework, as 421

described in Table I and Section II-E1. On the other hand, 422

as shown in Table II, corner features include the temperature, 423

voltage, and process of the corner. Furthermore, given that an 424

inverter consists of a pMOS and an nMOS, it can effectively 425

represent the switching characteristics of the corresponding 426

corner library. Thus, we also incorporate the elements in the 427

timing lookup tables of the inverter cell as our corner features. 428

Lookup tables of other primitive cells (e.g., NAND, AND, 429

etc.) might also be included to further enhance the model’s 430

learning quality. 431

After the extraction and concatenation of pin features pAi 432

and corner features qCk , the corresponding timing variability 433

ŷAiCk can be inferred as follows: 434

ŷAiCk = f�
([

pAi , qCk

])
(7) 435

where [·, ·] is the concatenation operator, and f� is the 436

interaction function with a set of parameters �. 437

In our NCF model, we use two layers of fully connected 438

neural network. Thus, the interaction function f� can be further 439

expressed as 440

f�
([

pAi , qCk

]) = σ
(
f�2

(
tanh

(
f�1

([
pAi , qCk

]))))
(8) 441

where � = {�1,�2}, �1, and �2 correspond to the parame- 442

ters of the first and the second NCF layer, respectively, tanh(·) 443

denotes the hyperbolic tangent function which serves as the 444

activation function, and σ(·) is the sigmoid function which 445

maps the predicted values to the range of [0, 1]. 446

Since the target yAiCk of each training data [pAi , qCk] is of a 447

binary value, we adopt the binary classification loss function 448

to optimize the model 449

L = −
∑

(Ai,Ck)∈X
yAiCk log ŷAiCk +

(
1− yAiCk

)
log

(
1− ŷAiCk

)
450

(9) 451

where X denotes the training label set which will be discussed 452

in Section IV-D. We use the Adam optimizer [21] to minimize 453

the loss defined by (9). Other design choices (e.g., increasing 454

the number of neural network layers, using different activation 455

functions, etc.) might be adopted to further improve the 456

performance. 457

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 7

Fig. 11. (a) Training label generation flow. (b) Flow of NCF model training, prediction, and timing macro model generation on testing data.

Fig. 12. (a) Intra-design/corner set matrix completion. (b) Inter-design/corner
set matrix completion. Initially, timing variability in the purple region is
known, while the goal is to infer the timing variability of the white region.

D. Training Label Generation458

To enhance the capability of timing variant pin identification459

of our NCF model, high-quality training labels are essential.460

Drawing from the achievements of our single-corner timing461

macro modeling framework, we leverage two key processes,462

insensitive pins filtering and TS evaluation, to generate our463

training labels. The details of these processes are presented464

in Fig. 7 and Section II-D. By extending the concepts of (1)465

and (2), we can define the TS in the context of multi-corner466

timing macro modeling467

TSAiCk = AVGb∈B

(
�slewb

AiCk
+�atbAiCk

+�ratbAiCk
+�slackb

AiCk

4

)
468

(10)469

�slewb
AiCk
= 1

|PI ∪ PO|�P∈PI∪PO
slewb

PCk,after − slewb
PCk,before

slewb
PCk,before

(11)470

where TSAiCk denotes the TS of pin Ai under timing corner Ck,471

B denotes the set of boundary timing constraints, slewb
PCk,before472

and slewb
PCk,after denote the slew value at boundary pin P under473

corner Ck before and after the removal of Ai, respectively,474

and �atbAiCk
, �ratbAiCk

, and �slackb
AiCk

can be obtained similar475

to (11). After the TS evaluation, we have to convert the TS476

values into binary to fill in the pin-corner matrix. In our work,477

a pin Ai is deemed timing variant under a corner Ck if and only478

if the corresponding TS is larger than a threshold tv. That is 479

yAiCk =
{

1, if TSAiCk > tv
0, otherwise

(12) 480

where tv is set as 0.0001 in our experiments. 481

However, the computational cost of the TS evaluation flow 482

increases linearly with the number of corners, making it 483

excessively time-consuming to evaluate TS for all pins across 484

all corners, particularly in large-scale training designs. To 485

expedite the generation of training labels, we also incorporate 486

NCF model and matrix completion into our training label 487

generation flow, as depicted in Fig. 11(a). Our approach begins 488

by performing insensitive pins filtering on each corner and 489

design, which involves a one-time timing propagation and 490

therefore does not consume significant time. Subsequently, 491

only the pins that have not been filtered out in at least one of 492

the corners are considered for the TS evaluation step. For each 493

large training design, we randomly select a subset of corners 494

and generate TS values for the remaining pins under those 495

corners, while TS values of small training design are generated 496

across all corners. Then, we convert TS values to timing 497

variability and build the pin-corner matrix. By employing 498

NCF model training and prediction, we can infer the timing 499

variability for the unselected corners. Fig. 12(a) visualizes the 500

matrix completion process. Timing variability for all pins from 501

small training designs is already known, whereas for pins in 502

large training designs, timing variability is only evaluated for 503

a subset of corners. The goal is to infer the timing variability 504

within the white part. Given that the known timing variability 505

spans across all designs and corners, we refer to this approach 506

as intra-design/corner set matrix completion. 507

E. Training Techniques—Data Augmentation With mixup 508

Now, intuitively, we can utilize the training features from 509

Tables I and II and the training labels generated from 510

Section IV-D to start the training of our NCF model. However, 511

due to the nature of timing graphs, few pins are actually 512

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

influential in the overall timing accuracy. Consequently, there513

exists a scarcity of positive elements (i.e., yAiCk = 1) in514

the pin-corner matrix (less than 10% in most designs). The515

overwhelmingly large portion of timing invariant data makes516

it hard for the model to distinguish critical but rare timing517

variant pins from hundreds of thousands of pins in a large518

circuit design. To mitigate the label imbalance issue, we utilize519

mixup [22], a simple yet effective data-augmentation approach520

that generates pseudo-training data by interpolation.521

We first group all pin-corner pairs with training label522

1 as the positive set X
+ : {(Ai, Ck)|(Ai, Ck) ∈ X and523

yAiCk = 1} and those with training label 0 as the negative set524

X
− : {(Aj, Cl)|(Aj, Cl) ∈ X and yAjCl = 0}. In each training525

iteration, for each pin-corner pair (Ai, Ck) in X
+, we sample526

one pin-corner pair (Aj, Cl) from the negative set X−. Then,527

the corresponding pin and corner features form a feature tuple528

(pAi , qCk , pAj , qCl). After that, we interpolate each data pair529

with a coefficient λ sampled from the Beta distribution to530

generate the augmented data531

p̃Aij = λpAi + (1− λ)pAj532

q̃Ckl = λqCk + (1− λ)qCl533

ỹAijCkl =
{

1, if λyAiCk + (1− λ)yAjCl > 0.5

0, otherwise.
534

After generating the augmented data (p̃Aij , q̃Ckl , ỹAijCkl), we can535

optimize the NCF model by rewriting the loss function (9) as536

follows:537

L = −
∑

(Ai,Ck)∈X+

[
ỹAijCkl log ŷAijCkl538

+(
1− ỹAijCkl

)
log

(
1− ŷAijCkl

)]
539

where540

ŷAijCkl = f�
([

p̃Aij , q̃Ckl

])
.541

As shown in Fig. 10, by interpolating the pin and corner542

features with opposite timing variability, the model is forced543

to learn more comprehensive and distinguishable features for544

timing variant pins and thus make more precise inferences on545

new layouts or unseen corners.546

F. Testing Data Prediction547

After completing the training label generation and data548

augmentation, we perform NCF model training and prediction549

to identify timing variant pins in the testing designs, as550

shown in Fig. 11(b). Unlike the intra-design/corner set matrix551

completion discussed in Section IV-D, where the timing552

variability of pins from all designs is known, in this case, the553

matrix completion process needs to infer timing variability for554

pins from completely unseen testing designs. Furthermore, we555

assume that there may exist unseen corners in the testing data.556

Therefore, we refer to this approach as inter-design/corner set557

matrix completion. Fig. 12(b) visualizes this matrix comple-558

tion process.559

Once we have identified the timing variant pins, we proceed560

to generate timing macro models for each testing design under561

each corner, employing a process similar to single-corner562

TABLE III
TRAINING DESIGN STATISTICS. IN EXPERIMENTS REGARDING THE

ACCELERATION OF TRAINING LABEL GENERATION IN SECTION V-C4,
THE LEFT 13 DESIGNS SERVE AS “SMALL” TRAINING DESIGNS WHILE

THE RIGHT SIX DESIGNS ARE “LARGE” TRAINING DESIGNS

TABLE IV
TESTING DESIGNS STATISTICS

timing macro modeling, as depicted in Fig. 8. The distinction 563

lies in the pin preservation step, which is now determined 564

based on the pin-corner matrix. 565

V. EXPERIMENTAL RESULTS 566

A. Experimental Settings 567

In our framework, the training and prediction of both NCF 568

models and GNN models are implemented in the Python3 569

programming language, while the insensitive pins filtering, 570

TS evaluation, and timing macro model generation are imple- 571

mented in the C++ programming language. The experiments 572

are conducted on a Linux workstation with a 3.7-GHz CPU, 573

192 GB RAM, and an NVIDIA RTX 3090 GPU. 574

For the experiments regarding single-corner timing macro 575

modeling, we adopt the benchmark suite provided by the 576

TAU 2016 [9] and TAU 2017 [10] contests as listed in 577

Tables III and IV. For the experiments regarding multi-corner 578

timing macro modeling, we also adopt the circuit designs 579

from these two contests. As for the multi-corner library, we 580

adopt the Synopsys SAED 32/28nm Digital Standard Cell 581

Library [23], as the TAU libraries do not support multi- 582

corner functionality. We use 27 base characterization corners 583

in our experiments, as listed in Table V. The first and second 584

characters in a corner’s name denote its nMOS and pMOS 585

processes, respectively, (f, t, and s represent fast, typical, 586

and slow, respectively). The central segment of a corner’s 587

name signifies the voltage, while the final segment denotes 588

the temperature. For instance, “tt1p05vn40c” corresponds to 589

typical nMOS and pMOS processes, 1.05 V, and −40◦C. In 590

each corner library, a total of 314 cells are characterized. We 591

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 9

TABLE V
CORNER LIST

have aligned the cell names in TAU 2016 and TAU 2017 circuit592

netlists with those in the SAED libraries.593

In our experiments, we assess timing accuracy by comparing594

the timing analysis results of the timing macro model with the595

flat circuit design. We adopt iTimerC 2.0 [14] as the reference596

timer. On the other hand, the evaluation of macro model size597

is based on the size of the early library associated with the598

timing macro model.599

B. Results on Single-Corner Timing Macro Modeling600

First, we evaluate our single-corner timing macro modeling601

framework and compare the results with state-of-the-art works.602

Note that in our experiments, we utilize only the first eight603

basic features in Table I, along with the is_CPPR feature. This604

selection is made to enhance the overall performance.605

Table VI shows the results on TAU 2016 [9] and TAU606

2017 [10] benchmarks considering CPPR and the compar-607

isons with two state-of-the-art ILM-based works iTimerM [3]608

and [4]. Among all the criteria, max error and model file size609

are viewed as the most crucial ones. Our framework achieves610

extremely high-timing accuracy as all the max errors are less611

than 0.1 ps, which is same as iTimerM [3] and 9 times better612

than [4]. As for model file size, our result is about 10% smaller613

than iTimerM [3] and 45% smaller than [4]. To summarize,614

our framework preserves the highest-timing accuracy in terms615

of max errors among the state-of-the-art works, while further616

improving the model size by 10% than the same-accuracy-617

level work. Our framework also achieves similar or even better618

results in terms of model generation performance and model619

usage performance. The average errors of our framework620

are slightly higher than those of iTimerM [3]; however,621

the difference is only a few femtoseconds and thus can be622

neglected.623

In Table VII, we demonstrate how domain knowledge can624

enhance GNN model training across various timing models625

or modes, using CPPR as a case study. As mentioned in626

Section II-E, multiple-fan-out pins of clock networks are627

crucial for CPPR calculation. Thus, we could add a dedicated628

training feature for CPPR to indicate this kind of pins,629

called is_CPPR. We adopt the results of iTimerM [3] as the630

baseline and calculate the differences and ratios as described631

in Table VI. Before adding is_CPPR, our framework could632

already achieve the same timing accuracy as iTimerM [3]633

while reducing the model size by 6%. After the is_CPPR634

feature is included, our framework still preserves the same635

timing accuracy while improving the model size by 10%. The636

result tells that our framework could achieve superior quality637

with only the basic features, while the dedicated features could638

capture the timing properties of designs more precisely.639

Fig. 13. Separated TS distribution of systemcaes based on the insensitive
pins filtering.

Table VIII displays the results on the TAU 2017 [10] 640

benchmark without CPPR. Our results are compared with 641

the ILM-based work iTimerM [3] and the ETM-based work 642

ATM [5]. In comparison with ATM [5], our framework 643

achieves 9 times better-max error and 25 times better-average 644

error, but it suffers from a larger model size. It is as our 645

expectation since our framework is ILM-based while ATM [5] 646

is ETM-based. Besides, we also achieve 17 times faster model 647

generation runtime than ATM [5]. As for the ILM-based work 648

iTimerM [3], we preserve the same timing accuracy while 649

improving the model size by 9%. The result demonstrates 650

the applicability and generality of our framework on different 651

timing modes (CPPR on and CPPR off), and it may be further 652

inferred to various timing delay models and modes. 653

As mentioned in Section II-D, the goal of the insensitive 654

pins filtering is to exclude noncritical pins rapidly, under the 655

premise that the timing accuracy is not degraded. Fig. 13 656

shows the timing sensitivities of pins in the training design 657

systemcaes. TS of pins that are filtered out are shown in the 658

left histogram, and those of the potential sensitive pins are 659

shown in the right histogram. It can be seen that a majority 660

of filtered pins indeed have zero TS, while many remained 661

pins have nonzero TS. It confirms the consistency between the 662

insensitive pins filtering and the TS evaluation, which implies 663

the insensitive pins filtering is suitable for accelerating the 664

training data generation flow. To further ensure the timing 665

accuracy is not degraded by the insensitive pins filtering, we 666

conduct an experiment in which the training labels of all the 667

remained pins after the insensitive pins filtering are set to 1. 668

The result is shown in Table IX. The results of iTimerM [3] 669

are adopted as the baseline, and the differences and ratios are 670

calculated as described in Table VI. The results achieve the 671

same timing accuracy as iTimerM [3] which is of the best 672

accuracy among the previous works. Therefore, it is supported 673

that the insensitive pins filtering does not degrade the resulting 674

timing accuracy. 675

Finally, when we encounter new benchmarks under the same 676

NLDM libraries, we only need to consider the GNN model 677

inference runtime and the model generation runtime since our 678

framework is available on general designs under the NLDM. 679

The GNN model inference time is usually much less than 680

the model generation time listed in the above tables. Thus, 681

our framework spends comparable or even shorter runtime 682

than previous work for unseen test data under the NLDM. As 683

for other timing delay models, such as AOCV, POCV, and 684

CCS, we need to further consider the training data generation 685

time and the GNN model training time. However, since our 686

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE VI
SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2016 [9] AND TAU 2017 [10] BENCHMARKS WITH CPPR. FOR THE

MODEL FILE SIZE, WE ADOPT THE SIZE OF THE LIBRARY FOR LATE TIMING. DIFFERENCE 1 AND RATIO 1 ARE COMPARED WITH ITIMERM [3].
DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH [4]. DIFFERENCE = COMPARED RESULT − OUR RESULT. RATIO = COMPAREDF RESULT/OUR

RESULT. NOTE THAT [4] IS ONLY EVALUATED ON TAU 2016 BENCHMARK IN THEIR WORK

TABLE VII
SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS WITH AND WITHOUT CPPR-DEDICATED FEATURES

framework could be directly applied to perform timing macro687

modeling no matter which timing model is chosen, users do688

not need to spend a great deal of time designing specific689

algorithms for different timing delay models and tuning a690

bunch of parameters. As a consequence, our framework still691

shows high applicability and efficiency on the timing macro692

modeling problem.693

C. Results on Multi-Corner Timing Macro Modeling694

1) Effectiveness of Our Multi-Corner Framework: In this695

section, we compare our multi-corner timing macro modeling696

framework with the multi-corner extensions of state-of-the-697

art single-corner timing macro modeling frameworks. The698

results of iTimerM [3] are obtained by directly conducting699

the iTimerM algorithm flow on each specific corner. For700

the experiments of our single-corner timing macro modeling701

framework (hereafter referred to as “[6]” to avoid ambiguity702

in this section), training data for each corner is generated first,703

and subsequently distinct GNN models are trained for each704

individual corner.705

To ensure fair comparisons, for experiments in706

Sections V-C1 and V-C2, all the training designs from707

Table III are categorized as “small” during the training label 708

generation process (as shown in Fig. 11); that is, the timing 709

variability of all the pins is evaluated under all the corners. 710

Note that LibAbs [2], [4] and ATM [5] do not support the 711

multi-corner SAED library, and thus they are not included in 712

the comparison in this section. 713

Table X presents the experimental results on TAU 2016 and 714

TAU 2017 benchmarks listed in Table IV over the 27 corners. 715

Here, the “average” max error (resp. model size) represents 716

the mean values of the maximum timing errors (resp. timing 717

macro model size) across the 27 corners, while the “max” 718

max error (resp. model size) indicates the highest values of the 719

maximum timing errors (resp. timing macro model size) across 720

the 27 corners. Note that the results in Table X are without 721

CPPR because the SAED library does not provide separate 722

early and late cell libraries. Nevertheless, incorporating CPPR 723

into our framework would pose no significant challenge, as 724

we can easily integrate the is_CPPR feature in our pin feature 725

vector. 726

Compared to the state-of-the-art algorithmic work 727

iTimerM [3], our framework demonstrates a 16% improvement 728

in model size while maintaining the same level of timing 729

accuracy, with an average max error difference of less than 730

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 11

TABLE VIII
SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2017 BENCHMARK WITHOUT CPPR. DIFFERENCE 1 AND RATIO 1

ARE COMPARED WITH ITIMERM [3]. DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH ATM [5]. DIFFERENCE = COMPARED RESULT − OUR

RESULT. RATIO = COMPARED RESULT/OUR RESULT. WE ADDITIONALLY INCLUDE THE CIRCUIT mgc_matrix_mult_iccad TO

EVALUATE SINCE ATM [5] ALSO ADOPTS IT AS ONE TEST CASE

TABLE IX
VALIDATION ON INSENSITIVE PINS FILTERING

0.2 ps. Moreover, considering the maximum of max error731

and model size, our framework reduces the timing macro732

model size by over 20% while maintaining a timing error733

difference of less than 0.1 ps. Compared to the learning-734

based approach [6], our framework exhibits a similar trend,735

showcasing a 10% improvement in average model size while736

keeping the timing error difference below 0.2 ps. Similarly,737

the results are even better when considering the maximum of738

max error and model size. The experimental results validate739

the precise identification of timing variant pins in each corner740

by our framework, leading to highly compact timing macro741

models. Furthermore, the superior performance observed in742

terms of the maximum of max error and model size suggests743

that our framework effectively captures the relationship744

between each pin and each specific corner, ensuring stable745

performance across all corners.746

In addition to timing accuracy and timing macro model747

size, our framework also exhibits outstanding performance748

in terms of runtime. As shown in Table XI(a), our frame-749

work achieves approximately a 16X faster model training750

time compared to [6]. The main reason is that the GNN751

models used in our single-corner framework [6] are specific752

to each corner. Consequently, experiments of [6] necessitated753

training 27 separate GNN models. In contrast, our NCF754

model in our multi-corner framework accounts for all the755

designs and corners involved and thus requires only one756

model that merely takes 4.12 s per training epoch. It is757

important to note that the time spent on model tuning has758

not been considered here, and it is obvious that fine-tuning 759

the parameters for 27 models is much more time-consuming 760

than for a single model. The speedups will be even more 761

significant for advanced technology nodes with hundreds or 762

even thousands of corners. Furthermore, Table XI(b) compares 763

the time required to identify and generate a file containing the 764

timing variant pins for the 11 designs listed in Table IV for 765

one corner. All three frameworks exhibit similar performance 766

in this aspect. Additionally, it is worth noting that our 767

framework is able to identify timing variant pins for unseen 768

designs. Therefore, it is reasonable to compare the model 769

inference time of our framework with the overall runtime of 770

iTimerM [3]. 771

To further analyze the results of multi-corner timing 772

macro modeling, we present 3-D surface plots that illustrate 773

variations in maximum errors and model sizes for various 774

corners and designs, as depicted in Fig. 14. These visual- 775

izations are based on the experimental results presented in 776

Tables X and XII. Each of the surface plots contains 297 777

data points (27 corners × 11 designs). In comparison with 778

model sizes, the max errors show more drastic changes across 779

various corners. This phenomenon aligns with the inherent 780

characteristics of timing macro models, wherein the mere 781

addition or removal of a small number of timing-critical 782

pins can induce significant alterations in timing behavior. 783

Nevertheless, our multi-corner framework maintains a max 784

error of less than 2.0 ps for all the corners and designs, 785

which is comparable to the existing works. Additionally, we 786

can observe from Fig. 14(f) that the model sizes of our 787

single-corner framework [6] fluctuate wildly across different 788

corners. It is as expected given that this approach necessitates 789

a unique GNN model for each corner. Consequently, this 790

model-by-model strategy may result in unstable performance 791

due to the uncertainties inherent in the training processes 792

for each GNN instance. In contrast, as shown in Fig. 14(g), 793

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE X
MULTI-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2016 AND TAU 2017 BENCHMARKS OVER 27 CORNERS. AVERAGE

ERROR AND MAX ERROR ARE COMPARED BY DIFFERENCE, WHERE DIFFERENCE = COMPARED RESULT − OUR RESULT. MACRO MODEL SIZE IS

COMPARED BASED ON RATIO, WHERE RATIO = COMPARED RESULT/OUR RESULT

Fig. 14. 3-D surface plots of max errors and model sizes across corners and designs.

our multi-corner framework consistently demonstrates similar794

model sizes across diverse corners, indicating its adaptability795

to various, and potentially unseen, timing corners.796

2) Exploration of Transfer Learning-Based Approach: As797

described in Section V-B, our single-corner framework [6]798

achieves timing accuracy comparable to the state-of-the-799

art works while reducing model sizes by 10%. Therefore,800

to enhance the performance of multi-corner timing macro801

modeling, an intuitive and reasonable approach is to leverage802

transfer learning (TL) [24] and transfer our single-corner803

results to diverse corners. Specifically, starting from a source804

corner (we select “tt0p78v25c” in our experiments), we imple-805

ment our GNN-based single-corner framework for 20 000806

epochs on this source corner. Subsequently, we fine-tune the807

generated timing macro model across the remaining 26 corners808

(listed in Table V) for 5000 epochs. The results are listed809

in Table XII, where the differences and ratios are compared810

against our multi-corner framework.811

Compared to the results in Table X, the TL-based approach812

achieves the most compact macro model sizes for most813

designs. However, it suffers from a significant degradation in814

timing accuracy. As illustrated in Fig. 14(h), we can observe815

the TL-based timing macro models exhibit strikingly uniform816

model sizes across various corners. We hypothesize that this817

uniformity arises due to the heavy reliance of the transferred818

timing macro models on the source timing macro model. 819

Consequently, these transferred models fail to discern and 820

retain pins that are uniquely sensitive to the specific corner. 821

This deficiency leads to significant accuracy fluctuations across 822

corners, as illustrated in Fig. 14(d). We further observe that 823

the transferred timing macro models tend to consider only 824

clock pins during TS evaluation while ignoring all other pins, 825

resulting in extremely small model sizes but with high-timing 826

errors. 827

To implement the TL-based approach, we still need to 828

generate training data for every corner, as described in 829

Section IV-D, and fine-tune for each target corner. In contrast, 830

our multi-corner framework can produce timing macro models 831

that are accurate and compact for various corners, even those 832

we have not seen before, without any additional fine-tuning. 833

Therefore, our multi-corner framework is more efficient and 834

generic than the TL-based approach. 835

3) Results on Unseen Corners: As discussed in 836

Section III-A, a challenging situation occurs when dealing 837

with chiplets that deviate from typical corners. To validate the 838

applicability of our framework in such scenarios, we hide 3 839

corners, “ff0p95v125c,” “ss0p75vn40c,” and “tt0p85v125c,” 840

from our training data. Then, we train our NCF model based 841

on the 24 known corners and identify timing variant pins 842

in testing designs under both the seen and unseen corners. 843

CHANG et al.: MULTI-CORNER TIMING MACRO MODELING WITH NCF 13

TABLE XI
MODEL INFERENCE RUNTIME FOR THE 11 TESTING DESIGNS FOR ONE

CORNER

(a)

(b)

TABLE XII
ABLATION STUDY ON TRANSFERRING OUR

SINGLE-CORNER FRAMEWORK

Table XIII shows the evaluation results across all the corners,844

where the values are averaged across the 11 testing designs845

in Table IV. It can be observed that the performance on the846

three unseen corners is comparable to that of the 24 seen847

corners. Moreover, the max error of the corner “ff0p95v125c”848

(0.0744 ps) falls in a similar range as the max errors of other849

fast/fast process corners (between 0.0595 ps and 0.0826 ps),850

and similar trends can also be observed on unseen corners851

“ss0p75vn40c” and “tt0p85v125c.” The results indicate that852

our framework is able to be generalized to arbitrary corners853

and demonstrates the potential for use in off-corner chiplets.854

4) Acceleration of Training Label Generation: As dis-855

cussed in Section IV-D, the training label generation on large856

designs takes an extremely long runtime to complete and857

therefore necessitates using the NCF to speed up the training858

label generation process. To validate the effectiveness of the859

NCF-based training label generation flow, we set the left 13860

designs in Table III as the “small” training designs and the861

right 6 designs as the “large” training designs. For each small862

training design, the TS and the timing variability of all pins863

under all corners are evaluated, while those of large training864

designs are evaluated under only 6 corners, ff0p85vn40c,865

ff1p16v125c, ss0p75v25c, ss0p95v125c, tt0p85v125c, and866

tt1p05v25c. Table XIV shows that the NCF model realizes867

a 4.4X speedup. It is worth noting that within the 16.8 h868

runtime after acceleration, the NCF model training and matrix869

completion only takes about 10 min, while most of the time870

is spent on the TS evaluation for the six corners. Thus, the871

acceleration will become more significant if the total number872

of corners increases. To further testify the quality of the873

NCF-generated labels, we compare the predicted labels with874

the golden labels (obtained by performing TS evaluation on875

the remaining 21 corners). On average, the NCF model can876

achieve almost 95% prediction accuracy. Thus, the accelerated877

training label generation flow can significantly reduce label878

TABLE XIII
EVALUATION RESULTS ON UNSEEN CORNERS. THE TRAINING DATA

CONSISTS SOLELY OF THE UPPER 24 CORNERS, WITH THE BOTTOM

THREE CORNERS BEING ENCOUNTERED FOR THE FIRST TIME DURING

THE EVALUATION OF THE TESTING DESIGNS

TABLE XIV
ACCELERATION OF TRAINING LABEL GENERATION

generation time while maintaining the accuracy of the gener- 879

ated labels. 880

VI. CONCLUSION 881

In this work, we present a novel learning-based single 882

corner timing macro modeling framework that is applicable to 883

various timing analysis models and modes. By leveraging our 884

proposed TS metric and drawing analogies between GNN and 885

timing macro modeling, our approach achieves exceptionally 886

high-timing accuracy while further improving the model size 887

than the most accurate state-of-the-art work. Furthermore, we 888

address and formulate the multi-corner timing macro modeling 889

problem. We view the problem from the perspective of recom- 890

mendation systems and transform it into a matrix completion 891

task. We introduce the concept of collaborative filtering and 892

propose an NCF-based framework to capture the complex 893

interactions between pins and corners. Through our frame- 894

work, high-quality timing macro models are generated for each 895

corner. Experimental results based on Synopsys SAED multi- 896

corner libraries [23] and TAU 2016 [9] and TAU 2017 [10] 897

benchmarks show our framework preserves extremely high- 898

timing accuracy while reducing more than 10% of model sizes 899

compared to state-of-the-art works. Moreover, our framework 900

achieves a 16X faster model training time and accelerates the 901

training label generation process by 4.4X. Additionally, based 902

on the evaluation of our prediction results on unseen corners, 903

the applicability of our framework for off-corner chiplets is 904

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

also validated. Future work includes timing macro modeling905

for multi-corner multi-mode (MCMM), the development of906

unified timing macro models for multiple corners, and timing907

macro modeling for multiple-chiplet integration or subsystems.908

REFERENCES909

[1] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, “Automated910

timing model generation,” in Proc. Design Autom. Conf. (DAC), 2002,911

pp. 146–151.912

[2] T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, “LibAbs: An efficient913

and accurate timing macro-modeling algorithm for large hierarchi-914

cal designs,” in Proc. 54th Design Autom. Conf. (DAC), 2017,915

pp. 1–6.916

[3] P.-Y. Lee and I. H.-R. Jiang, “iTimerM: A compact and accurate timing917

macro model for efficient hierarchical timing analysis,” ACM Trans.918

Design Autom. Electron. Syst. (TODAES), vol. 23, no. 4, pp. 1–21, 2018.919

[4] T.-Y. Lai and M. D. F. Wong, “A highly compressed timing macro-920

modeling algorithm for hierarchical and incremental timing analysis,”921

in Proc. Asia South Pac. Design Autom. Conf. (ASP-DAC), 2018,922

pp. 166–171.923

[5] K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, “ATM: A high924

accuracy extracted timing model for hierarchical timing analysis,” in925

Proc. 26th Asia South Pac. Design Autom. Conf. (ASP-DAC), 2021,926

pp. 278–283.927

[6] K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, “Timing928

macro modeling with graph neural networks,” in Proc. 59th Design929

Autom. Conf. (DAC), 2022, pp. 1219–1224.930

[7] M. Andersch et al. “NVIDIA hopper architecture in-depth.” 2022.931

[Online]. Available: https://developer.nvidia.com/blog/nvidia-hopper-932

architecture-in-depth/933

[8] B. Bailey. “Taming corner explosion in complex chips.” 2023. https://934

semiengineering.com/taming-corner-explosion-in-complex-chips/935

[9] J. Hu, S. Chen, X. Zhao, and X. Chen, “TAU 2016 timing contest936

on macro modeling,” 2016. [Online]. Available: https://sites.google.com/937

site/taucontest2016/938

[10] S. Chen and A. Khandelwal, “TAU 2017 timing contest on macro939

modeling,” 2017. [Online]. Available: https://sites.google.com/site/940

taucontest2017/941

[11] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A942

comprehensive survey on graph neural networks,” IEEE Trans. Neural943

Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.944

[12] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation945

learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.946

Syst. (NIPS), 2017, pp. 1025–1035.947

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with graph948

convolutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),949

2017, pp. 1–14.950

[14] P.-Y. Lee, I. H.-R. Jiang et al., “iTimerC 2.0: Fast incremental timing and951

CPPR analysis,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),952

2015, pp. 890–894.953

[15] S. Onaissi, F. Taraporevala, J. Liu, and F. Najm, “A fast approach for954

static timing analysis covering all PVT corners,” in Proc. 48th Design955

Autom. Conf. (DAC), 2011, pp. 777–782.956

[16] A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, ““Unobserved corner”957

prediction: Reducing timing analysis effort for faster design convergence958

in advanced-node design,” in Proc. Design, Autom. Test Eur. Conf.959

(DATE), 2019, pp. 168–173.960

[17] X. Jiao, D. Ma, W. Chang, and Y. Jiang, “TEVoT: Timing error modeling961

of functional units under dynamic voltage and temperature variations,”962

in Proc. 57th Design Autom. Conf. (DAC), 2020, pp. 1–6.963

[18] W. Fu et al., “A cross-layer power and timing evaluation method for964

wide voltage scaling,” in Proc. 57th ACM/IEEE Design Autom. Conf.965

(DAC), 2020, pp. 1–6.966

[19] S. Bian, M. Hiromoto, M. Shintani, and T. Sato, “LSTA: Learning-967

based static timing analysis for high-dimensional correlated on-chip968

variations,” in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC),969

2017, pp. 1–6.970

[20] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural971

collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web (WWW),972

2017, pp. 173–182.973

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”974

in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.975

[22] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond976

empirical risk minimization,” 2018, arXiv:1710.09412.977

[23] (Synopsys Inc., Sunnyvale, CA, USA). SAED_EDK32/28_CORE—978

SAED 32/28nm Digital Standard Cell Library. (2012). [Online].979

Available: https://solvnetplus.synopsys.com980

[24] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc.981

IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.982

Kevin Kai-Chun Chang received the B.S. degree 983

in electrical engineering from National Taiwan 984

University, Taipei, Taiwan, in 2022. He is currently 985

pursuing the Ph.D. degree with the Department 986

of Electrical Engineering and Computer Sciences, 987

University of California at Berkeley, Berkeley, CA, 988

USA. 989

His research interests lie in the design and ver- 990

ification of cyber–physical systems, autonomous 991

vehicles, and electronic design automation. 992

Guan-Ting Liu received the B.S. degree in electron- 993

ics engineering with cross-discipline in computer 994

science from National Chiao Tung University, 995

Hsinchu, Taiwan, in 2018, and the Ph.D. degree 996

from the Graduate Institute of Networking and 997

Multimedia, National Taiwan University, Taipei, 998

Taiwan, in 2024. 999

He is currently a Research Scientist with NVIDIA 1000

Research Taiwan, Taipei, Taiwan. His research 1001

interests include machine learning, reinforcement 1002

learning, and electronic design automation. 1003

Chun-Yao Chiang received the B.S. degree in 1004

electrical engineering from National Sun Yat-sen 1005

University, Kaohsiung, Taiwan, in 2019, and the 1006

M.S. degree in electronic design automation from 1007

the Graduate Institute of Electronics Engineering, 1008

National Taiwan University, Taipei, Taiwan, 1009

in 2021. 1010

He is currently a Software Research and 1011

Development Engineer with Synopsys Inc., 1012

Taipei, Taiwan. His current research interests 1013

include physical design, timing analysis, 1014

and IR drop analysis. 1015

Pei-Yu Lee received the Ph.D. degree in electron- 1016

ics engineering from the Institute of Electronics, 1017

National Chiao Tung University, Hsinchu, Taiwan, 1018

in 2018. 1019

He is currently a Staff Engineer with Synopsys 1020

Inc., Hsinchu, Taiwan, and his research interests 1021

include physical design, timing analysis, distributed 1022

computing, and machine-learning for EDA. 1023

Dr. Lee received Four First Place Awards from 1024

TAU Timing Contests and the 2017 TSIA Doctoral 1025

Graduate Student Award. He has served on the 1026

Program Committees for ASP-DAC and ISPD, and the Contest Chair for 1027

CADathlon at ICCAD. 1028

Iris Hui-Ru Jiang received the B.S. and Ph.D. 1029

degrees in electronics engineering from National 1030

Chiao Tung University, Hsinchu, Taiwan. 1031

She is currently a Professor with the Department 1032

of Electrical Engineering and Graduate Institute 1033

of Electronics Engineering, National Taiwan 1034

University, Taipei, Taiwan. Her current research 1035

interests include timing analysis and optimization 1036

and design for manufacturability. 1037

Dr. Jiang has served as the General Chair for 1038

ISPD, the Program Chair for ISPD and ASP-DAC, 1039

and the Associate Editor for IEEE TRANSACTIONS ON COMPUTER-AIDED 1040

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. 1041

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

