Multi-Corner Timing Macro Modeling With Neural **Collaborative Filtering From Recommendation** Systems Perspective

Kevin Kai-Chun Chang, Guan-Ting Liu, Chun-Yao Chiang, Pei-Yu Lee, and Iris Hui-Ru Jiang¹⁰

Abstract—Timing macro modeling has been widely employed 2 to enhance the efficiency and accuracy of parallel and hierarchi-3 cal timing analysis. However, existing studies primarily focused 4 on generating an accurate and compact timing macro model 5 for single-corner libraries, making it difficult to adapt these 6 approaches to multi-corner situations. This either incurs sub-7 stantial engineering effort or results in significant performance 8 degradation. To tackle this challenge, we offer a fresh per-9 spective on the timing macro modeling problem by drawing 10 inspiration from recommendation systems and formulating it as 11 a matrix completion task. We propose a neural collaborative 12 filtering-based framework capable of capturing the convoluted 13 relationships between circuit pins and timing corners. This frame-14 work enables the precise identification of timing variant regions 15 across different corners. Additionally, we design several training 16 features and implement various training techniques to enhance 17 precision. Experimental results show that our framework reduces 18 model sizes by more than 10% compared to state-of-the-art 19 single-corner approaches, while maintaining competitive tim-20 ing accuracy and exhibiting significant runtime improvements. 21 Furthermore, when applied to unseen corners, our framework 22 consistently delivers superior performance, demonstrating its 23 potential for use in off-corner chiplets in a heterogeneous 24 integration system.

Index Terms-Matrix completion, multiple corners, recommen-25 26 dation systems, timing macro modeling.

27

I. INTRODUCTION

S THE design complexity continues to grow rapidly, 28 timing analysis has become a significant bottleneck of the 29 30 IC design flow. To address this issue, parallel and hierarchical 31 timing analysis is widely adopted, which heavily relies on 32 timing macro modeling. As shown in Fig. 1(a), a large design 33 is first partitioned into several blocks; each block is then 34 analyzed once, and a corresponding timing macro model is

Manuscript received 14 August 2023; revised 7 January 2024; accepted 6 March 2024. This work was supported in part by the National Science and Technology Council, Taiwan. This article was recommended by Associate Editor E. R. Keiter. (Corresponding author: Iris Hui-Ru Jiang.)

Kevin Kai-Chun Chang is with the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720 USA.

Guan-Ting Liu is with NVIDIA Research Taiwan, Taipei 114066, Taiwan. Chun-Yao Chiang is with Synopsys Inc., Taipei 110208, Taiwan.

Pei-Yu Lee is with Synopsys Inc., Hsinchu 300093, Taiwan.

Iris Hui-Ru Jiang is with the Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106319, Taiwan (e-mail: huirujiang@ ntu.edu.tw)

Digital Object Identifier 10.1109/TCAD.2024.3383350

Fig. 1. Flows of timing macro modeling. (a) Single-corner flow. (b) Multicorner flow. The circuit is the NVIDIA GH100 GPU quoted from [7].

generated to encapsulate the timing properties of the block. 35 Subsequently, the timing macro model can be reused for the 36 same blocks and thus expedites the timing analysis process. In 37 order to generate an accurate and concise timing macro model, 38 timing variant pins (whose timing is affected by primary input 39 (PI) slews or primary output (PO) loading) in a design should 40 be preserved for accuracy, and timing invariant pins can be 41 reduced for compactness. 42

Numerous timing macro modeling approaches have been 43 proposed in the literature. Most of the approaches are algo-44 rithmic, employing a variety of graph-based algorithms during 45 the extraction of timing macro models [1], [2], [3], [4], [5]. 46 In contrast, we present a novel machine learning-based 47 framework in [6]. By incorporating graph neural networks 48 (GNNs), our framework effectively captures timing variant 49 pins, and achieves timing accuracy comparable to state-of-50 the-art algorithmic methods while reducing the model size 51 by 10%. Furthermore, our GNN-based framework can easily 52 be applied to various timing analysis models and modes. 53

With the advancement of semiconductor technology, the 54 timing analysis flow now encompasses the verification of 55 numerous PVT corners (combinations of process, voltage, 56

1

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

⁵⁷ and temperature parameters) [8]. To ensure that accurate ⁵⁸ timing analysis can be performed quickly for all the corners, ⁵⁹ it is crucial to generate a dedicated timing macro model ⁶⁰ for each corner, as illustrated in Fig. 1(b). However, the ⁶¹ aforementioned previous work, including our GNN-based ⁶² framework, has mainly focused on single-corner timing macro ⁶³ modeling, making it difficult to extend to multi-corner scenar-⁶⁴ ios. Accomplishing this either demands substantial engineering ⁶⁵ efforts or results in timing macro models with diminished ⁶⁶ accuracy and large sizes. The challenges become even more ⁶⁷ pronounced when conducting timing analysis on off-corner ⁶⁸ chiplets, where single-corner approaches are rendered imprac-⁶⁹ tical due to the absence of characterized libraries.

The main challenge of multi-corner timing macro modeling 70 71 lies in accurately identifying the difference of timing vari-72 ance on pins for each corner. This is a critical factor in 73 achieving compact model sizes and high-timing accuracy. 74 To tackle this challenge, we formulate the identification 75 problem as a matrix completion task and utilize principles 76 from recommendation systems. We introduce the concept collaborative filtering, which effectively captures simi-77 of 78 larities between pins and utilizes observed data to infer 79 timing variability. Furthermore, we employ neural collab-80 orative filtering (NCF) to model the intricate interactions 81 between pins and corners. Leveraging the neural network ⁸² layers within the NCF model, we can grasp the complex rela-83 tionships inherent in the multi-corner timing macro modeling problem. 84

The main contributions of this work are summarized as 66 follows.

To the best of our knowledge, our work is the first to
 address and formulate the multi-corner timing macro
 modeling problem.

We offer a novel recommendation system-based perspective for timing macro modeling and formulate it as a matrix completion problem. This allows us to effectively capture the relationship between pins and corners.

3) We propose a NCF-based framework to learn the intri-94 cate pin-corner interactions. The NCF model not only 95 achieves competitive timing accuracy and reduces macro 96 model sizes by more than 10% compared to the state-97 of-the-art works in million-gate/instance-scale designs, 98 but also demonstrates a 16X faster model training time. 99 Additionally, the NCF model accelerates the training 100 label generation process by 4.4X. 101

4) Our framework consistently preserves exceptional
 performance when applied to unseen corners, demon strating its potential for utilization in off-corner chiplets.

The remainder of this article is organized as follows: Section II formulates the single-corner timing macro modeling problem, reviews the previous work on single-corner timmagnetic macro modeling, and details our GNN-based framework proposed in [6]. Section III discusses the challenges and fromulates the multi-corner timing macro modeling problem. Section IV details our multi-corner timing macro modeling framework. Section V shows experimental results. Finally, Section VI concludes this work.

II. SINGLE-CORNER TIMING MACRO MODELING

114

115

129

A. Problem Formulation

In this work, we follow the problem formulation from TAU 116 2016 and 2017 contests [9], [10], which is also adopted by 117 most previous work. The *single-corner timing macro modeling* 118 problem can be defined as follows. 119

Given a circuit netlist (*.v files) along with its parasitics ¹²⁰ (*.*spef* files) and the early and late cell libraries (*.*lib* files), ¹²¹ the goal is to generate a timing macro model that encapsulates ¹²² the timing behaviors of the design. ¹²³

The generated timing macro model is evaluated based on ¹²⁴ two primary criteria: 1) timing accuracy (the higher, the better) ¹²⁵ and 2) the macro model size (the lower, the better). Note that ¹²⁶ there exists a tradeoff between them. Furthermore, the runtime ¹²⁷ required to generate the timing macro model is also crucial. ¹²⁸

B. Previous Work

Interface logic models (ILMs) and extracted timing models 130 (ETMs) [1] are two pioneering single-corner timing macro 131 modeling approaches. ILM preserves circuit netlists from PI 132 or PO ports to the first level of registers (i.e., interface 133 logic) while eliminating register-to-register paths. In con- 134 trast, ETM consists solely of context-independent timing 135 arcs between external pins. Subsequent works often build 136 upon either of these two paradigms. Generally, ILM-based 137 approaches [2], [3], [4] achieve exceptionally high-timing 138 accuracy but suffer from larger macro model sizes. Conversely, 139 ETM-based approaches [5] can extract smaller macro models 140 at the expense of timing accuracy. Moreover, ETM-based 141 methods are suitable for IP-reuse scenarios, as they can 142 conceal circuit implementations, while ILM-based methods are 143 more adaptable to advanced timing analysis modes, such as 144 common path pessimism removal (CPPR). 145

For ILM-based approaches, LibAbs [2] and its following ¹⁴⁶ work [4] propose several graph reduction techniques that are ¹⁴⁷ applied alternately to timing graphs. This iterative process ¹⁴⁸ results in a more concise timing macro model. iTimerM [3] ¹⁴⁹ divides the circuit netlist into constant and variant timing ¹⁵⁰ regions, where the constant timing region is eliminated to ¹⁵¹ achieve compactness. The separation is based on the propagation of minimum/maximum slew values, designating pins ¹⁵³ with stabilized slew ranges as constant. On the other hand, ¹⁵⁴ ATM [5] builds upon the ETM paradigm. It also adopts ¹⁵⁵ slew propagation to identify checkpoint pins, which are then ¹⁵⁶ inserted into the ETM model to improve timing accuracy. ¹⁵⁷ Fig. 2 summarizes the existing single-corner timing macro ¹⁵⁸ modeling frameworks.

To facilitate analysis efficiency, the key objective of timing macro modeling is to strike a balance between timing 161 accuracy and the size of the generated timing macro model. 162 Nevertheless, previous work adopts some heuristic techniques 163 during their model extraction, which may cause degradation 164 on the solution quality. For instance, LibAbs [2], [4] applies 165 in-tree and out-tree graph reductions alternatively, based on 166 the observation on the timing arc forms of cells or nets. 167 Besides, some works need to set a threshold for variant pins 168

Fig. 2. Comparison of previous work and our framework.

¹⁶⁹ identification, which requires considerable engineering effort, ¹⁷⁰ and the same threshold may not be applicable for various ¹⁷¹ circuit designs. For example, iTimerM [3] uses a threshold ¹⁷² to separate the variant regions with the constant region, and ¹⁷³ ATM [5] uses a threshold to determine which pins are dirty. ¹⁷⁴ Therefore, there is still room for improvement.

175 C. Overview of Our GNN-Based Framework

To overcome the deficiencies of prior work, we propose a GNN-based single-corner timing macro modeling frametwork [6]. GNNs have been developed to apply deep learning methods to graph data [11]. In a typical GNN scheme, node information is aggregated and transformed between neighbors recursively. After several neural network layers, a high-level representation of each node is extracted, which encapsulates the features and structures of the node's neighborhood.

There are several reasons that GNN is suitable for the timing 184 185 macro modeling problem. First, the evaluation of timing criti-186 cality on circuit pins is usually challenging for heuristic-based 187 methods. Nevertheless, graph-learning-based methods could 188 capture implicit properties of circuit pins and thus evaluating 189 timing importance more precisely. Second, the aggregation of ¹⁹⁰ node attributes in GNN is similar to the propagation of timing values on timing graphs, as shown in Fig. 3. Consequently, the 191 ¹⁹² timing properties of circuit pins could be captured and learned 193 by GNN models smoothly. Third, due to the information 194 exchange mechanism in GNN, the final representations of 195 adjacent nodes tend to become similar. This property is desired ¹⁹⁶ in timing macro modeling since neighbor pins are usually of comparable degrees of timing criticality. Lastly, it is natural to 197 198 represent circuit netlists by graphs, and thus GNNs could be ¹⁹⁹ easily embedded into the timing macro modeling framework. Fig. 4 illustrates the proposed timing macro modeling 200 ²⁰¹ framework. In the first stage, the timing sensitivity (TS) of 202 each circuit pin is evaluated to reflect the influence of each ²⁰³ pin on the overall timing accuracy. Then, the training data is 204 generated accordingly. In the second stage, we adopt GNN 205 models to learn the properties of circuit designs and predict 206 the timing sensitivities of testing data. Finally, starting from the ILM, timing macro models are generated based on our 207 timing sensitivities prediction. Different from previous work, 208 which mainly focuses on nonlinear delay model (NLDM), 209 210 our framework could also be applied to other advanced node 211 timing analysis models, such as CCS, AOCV, and POCV, 212 or different timing modes like CPPR. The generality of our

Fig. 3. Analogy between GNN aggregation and timing propagation. Timing values, including slew, arrival time, and required arrival time are propagated through edges (blue and green arrows). On the other hand, node features of layer l, $h_i^{(l)}$, are aggregated through edges and transformed into node features of layer l + 1, $h_i^{(l+1)}$ (red arrows).

Fig. 4. Overview of our GNN-based single-corner timing macro modeling framework.

framework comes from the fact that timing sensitivities could ²¹³ be adaptively evaluated depending on the given timing delay ²¹⁴ model. Moreover, the GNN models could effortlessly capture ²¹⁵ the corresponding timing properties. ²¹⁶

D. Timing Sensitivity Data Generation

1) *Timing Sensitivity:* In order to generate a high-quality ²¹⁸ timing macro model, we need to precisely evaluate the influ-²¹⁹ ence of each circuit pin on the timing accuracy of the whole ²²⁰ design. Then, pins with subtle influences could be waived to ²²¹ reduce the model size, and meanwhile the timing accuracy will ²²² not be degraded. ²²³

The lower section of Fig. 7 (highlighted by red dashed ²²⁴ lines) shows how we evaluate the TS of each pin. Given the ²²⁵ input circuit graph, we first randomly generate several sets ²²⁶ of boundary timing constraints. For each timing constraint, ²²⁷ we store the corresponding timing analysis results of ILM ²²⁸ as references. In the TS evaluation stage, we remove a pin ²²⁹ from the circuit each time. After the removal, we perform ²³⁰ timing propagation based on each set of boundary timing ²³¹ constraints generated and compute the differences between ²³² the current and the reference timing values (including slew, ²³³ arrival time (at), required arrival time (rat), and slack) at the ²³⁴ boundary pins. Finally, TS of a pin (for convenience, denoted ²³⁵

Fig. 5. TS distribution of fft_ispd.

236 as A_i in the following discussion) is set as the average of ²³⁷ timing value differences under the different timing constraints. ²³⁸ Equations (1) and (2) define the TS of pin A_i , where \mathbb{B} denotes 239 the collection of generated boundary timing constraints, and ²⁴⁰ $slew_{P,before}^{b}$ (*resp.* $slew_{P,after}^{b}$) denotes the slew value of a ²⁴¹ boundary pin *P* under the timing constraint *b* before (*resp.* ²⁴² after) pin A_i 's removal. The definitions of $\Delta at_{A_i}^b$, $\Delta rat_{A_i}^b$, and ²⁴³ $\Delta slack_{A_i}^b$ are similar to that of $\Delta slew_{A_i}^b$

²⁴⁴
$$TS_{A_i} = AVG_{b \in \mathbb{B}} \left(\frac{\Delta slew_{A_i}^b + \Delta at_{A_i}^b + \Delta rat_{A_i}^b + \Delta slack_{A_i}^b}{4} \right)$$
²⁴⁵ (1)

2

$$_{246} \Delta slew_{A_i}^b = \frac{1}{|PI \cup PO|} \sum_{P \in PI \cup PO} \frac{slew_{P,after}^b - slew_{P,before}^b}{slew_{P,before}^b}.$$
 (2)

2) Insensitive Pins Filtering: Although the TS evaluation 247 248 flow could accurately compute the influence of each pin on 249 the overall timing accuracy, running the flow for all the pins time-consuming as we need to perform timing propagation 250 is once in each iteration. To enhance the efficiency, we first 251 observe that the majority of the pins have extremely small 252 even zero TS. It is due to the nature of timing graph that or 253 most of the pins have subtle influences on the overall timing 254 ²⁵⁵ accuracy. For example, the TS distribution of circuit *fft_ispd* is ²⁵⁶ shown in Fig. 5, where 70% pins have zero TS, while only few pins have large TS. Therefore, if we can find a rapid screening 257 ²⁵⁸ method to filter the insensitive pins first, we could perform TS ²⁵⁹ evaluation flow on the potential critical pins only.

Timing value difference propagation is a suitable method 260 for insensitive pins filtering. At each PI or PO port, two timing 261 values, t_{\min} and t_{\max} , are set up. We then propagate the timing 262 values through the design and monitor the difference between 263 ²⁶⁴ the two timing values at each pin. According to the shielding ²⁶⁵ effect, as shown in Fig. 6, the difference decays after several 266 levels, and pins with small difference tend to have subtle ²⁶⁷ influence on the overall timing accuracy. Inspired by previous works [3], [5], we choose slew to propagate from each PI. 268 After the propagation, the slew difference (SD) at each pin is 270 standardized, and pins with SD less than a threshold is filtered ²⁷¹ out. Fig. 7 illustrates the whole training data generation flow.

272 E. GNN-Based Timing Macro Modeling

1) GNN Model Training and Prediction: With the TS 273 274 training data, GNN models could learn and predict accord-275 ingly. In this work, we adopt GraphSAGE [12] as our main 276 GNN engine. For each node v, (3) first aggregates the node

Fig. 6. SD and shielding effect.

Fig. 7. TS training data generation flow.

features from its neighborhood $\mathcal{N}(v)$, then (4) concatenates 277 and encodes the representation of node v with the aggregated 278 vector. In the experiments, only four rounds of aggregations 279 and encodings are performed, as the timing property of a node 280 is mostly influenced by its neighborhood. Other existing GNN 281 models, such as GCN [13] or even self-defined GNN models, 282 could also be embedded with our framework 283

$$h_{\mathcal{N}(v)}^{k} \longleftarrow \text{AGGREGATE}_{k}\left(h_{u}^{k-1}, \forall u \in \mathcal{N}(v)\right)$$
 (3) 284

$$h_{\nu}^{k} \longleftarrow \sigma \left(W^{k} \cdot \text{CONCAT} \left(h_{\nu}^{k-1}, h_{\mathcal{N}(\nu)}^{k} \right) \right).$$
 (4) 285

We treat the GNN prediction as a classification problem and 286 convert the training labels of pins to $\{0, 1\}$. A pin's label is set 287 to 1 if its TS is not zero. In addition, for CPPR mode, labels 288 of multiple-fan-out pins of clock networks are also set to 1, as 289 previous work, e.g., [14], suggests their importance for CPPR 290 calculation. 291

The training features are listed in Table I. The features 292 are all basic circuit properties which could be extracted 293 within linear time. Features beginning with "is" are of $\{0, 1\}$ 294 Boolean values. For integer type features like level_from_PI, 295 level to PO, and out degree, the values are normalized to 296 [0, 1] so that each feature have the same level of influences. 297

2) Timing Macro Model Generation: Fig. 8 details the 298 timing macro model generation stage. First, we construct the 299 initial timing graph and capture the interface logic netlist 300 to construct ILM. Second, we apply both serial and parallel 301 merging techniques to simplify the timing graph and retain 302 only the timing variant pins identified by the GNN model. For 303 serial merging, the delay of a merged edge is the sum of the 304 original ones, while the slew inherits the last edge. For parallel 305

Description
The minimum level from a PI to the pin
The min. level from the pin to a PO
If the pin is the fanout of a last stage pin
If the pin is the last stage of the timing graph
If the pin is the first stage of the timing graph
The number of output edges of the pin
If the pin belongs to clock network
If the pin is the clock pin of a flip-flop
The enumeration number of the cell type
The fan-in size of the rise pin
The fan-out size of the rise pin
The fan-in size of the fall pin
The fan-out size of the fall pin
If the pin is crucial for CPPR

TABLE I TRAINING FEATURES

Fig. 8. Timing macro model generation.

³⁰⁶ merging, delay or slew is the minimum (*resp.* maximum) of the ³⁰⁷ original edge values in the early (*resp.* late) mode. Afterward, ³⁰⁸ we apply the lookup table index selection method proposed ³⁰⁹ in [3], where indices that minimize the interpolation timing ³¹⁰ error are selected. Lastly, the timing macro model is generated.

311 III. MULTI-CORNER TIMING MACRO MODELING

312 A. Corner Explosion and Challenges

With the continuous advances in the semiconductor industry, 313 design verification now involves examinations under numer-314 315 ous PVT corners [8]. This rigorous verification process is 316 essential to ensure the robustness of a design under possible 317 operating conditions. Several approaches have been proposed 318 address the challenges associated with multi-corner timing analysis [15], [16], [17], [18], [19]. Nevertheless, none of 319 320 the previous work has focused on multi-corner timing macro 321 modeling. The groups of timing variant pins may vary a lot 322 across different corners. Consequently, adapting the single-323 corner timing macro modeling frameworks mentioned in 324 Section II to multi-corner settings presents significant engi-325 neering effort or leads to substantial performance degradation. 326 For example, iTimerM [3] and ATM [5] need to fine-tune 327 distinct thresholds for each corner. Similarly, although our ³²⁸ single-corner timing macro modeling framework is applicable 329 across different corners, users are still required to extract 330 training data and train an exclusive GNN model for each 331 corner. It becomes even more challenging when dealing with 332 chiplets that deviate from typical corners. To the best of our ³³³ knowledge, existing approaches lack feasibility in identifying timing variant pins without the presence of a characterized ³³⁴ corner library. ³³⁵

B. Problem Formulation

We extend the problem formulation of single-corner timing ³³⁷ macro modeling defined in Section II-A to encompass multicorner settings. The only differences are the input cell libraries ³³⁹ are now associated with a set of timing corners, and the ³⁴⁰ framework should generate a dedicated timing macro model ³⁴¹ for each corner within the corner set or for each unseen corner. ³⁴²

IV. OUR MULTI-CORNER TIMING MACRO MODELING 343 FRAMEWORK 344

A. Problem Modeling

The primary challenge of the multi-corner timing macro 346 modeling problem lies in the precise identification of timing 347 variant pins for each corner. This allows us to build a compact 348 timing macro model for each corner while preserving high- 349 timing accuracy. To effectively tackle the issue of identifying 350 timing variant pins, we have discovered that it can be 351 approached from the perspective of recommendation systems 352 because the relationship between pins and corners resembles 353 the user-item relationship in recommendation systems. In the 354 context of recommendation systems, the goal is to capture 355 user-item interactions and provide personalized suggestions. 356 Likewise, in the multi-corner timing macro modeling problem, 357 our objective is to understand the interactions between pin 358 features and corner properties and determine whether a pin 359 is timing variant under a specific corner. By reframing the 360 problem in this manner, we can leverage the well-established 361 techniques from the field of recommendation systems to 362 improve the identification of timing variant pins. 363

A common approach to interpret user-item interactions is to construct a user-item matrix, where each element represents the relationship between the corresponding user and item [20]. Then, it becomes a matrix completion problem that aims to determine the missing entries based on known user-item interactions. Similarly, we can formulate pin-corner relationships as a matrix completion problem. Based on this formulation, our framework has the potential to infer the variability of pins in new designs or assess the degrees of variability under unseen corners.

With this understanding, we can formally define the timing ³⁷⁴ variant pin identification problem in the context of matrix ³⁷⁵ completion, where each circuit pin serves as a user, and each ³⁷⁶ corner is considered an item. The pin-corner matrix $Y \in \mathbb{R}^{M \times N}$ ³⁷⁷ for *M* pins and *N* corners is defined as ³⁷⁸

$$y_{A_iC_k} = \begin{cases} 1, & \text{if pin } A_i \text{ is timing variant under corner } C_k \\ 0, & \text{otherwise.} \end{cases}$$

Fig. 9 illustrates the modeling of the pin-corner matrix. The $_{381}$ goal of the matrix completion process is to determine whether $_{382}$ each element $y_{A_iC_k}$ is 0 (pin A_i is not timing variant under $_{383}$ corner C_k) or 1 (A_i is timing variant under C_k). $_{384}$

336

				Cor	ner Featu	ires	
						-	
			Corner 1	Corner 2	Corner 3		Corner N
s	➡	Pin 1	0 / 1	0 / 1	0 / 1		0 / 1
Ĩ	⇒	Pin 2	0 / 1	0 / 1	0 / 1		0 / 1
eat	⇒	Pin 3	0 / 1	0 / 1	0 / 1		0 / 1
Pin Features	⇒	:	:	:	:	•.	:
Р	⇒	Pin M	0 / 1	0 / 1	0 / 1		0 / 1

Fig. 9. Visualization of a pin-corner matrix.

Fig. 10. Structure of the NCF network and data augmentation with mixup.

385 B. Collaborative Filtering

398

To address the pin-corner matrix completion problem, we 386 ³⁸⁷ employ the concept of *collaborative filtering*, which identifies shared interests among users, such as the tendency of users, 388 that purchase item A also purchase item B, and leverages this 389 information to provide similar recommendations to users with 390 similar preferences. This attribute is beneficial in the problem 391 of multi-corner timing variant pin identification, as pins with 392 similar properties often exhibit comparable levels of timing 393 variability under the same corner. 394

³⁹⁵ By employing collaborative filtering, we can express the ³⁹⁶ interaction between the pin A_i and the corner C_k as a function ³⁹⁷ of the pin embedding p_{A_i} and the corner embedding q_{C_k}

$$\hat{y}_{A_iC_k} = f(A_i, C_k | p_{A_i}, q_{C_k}) \tag{6}$$

³⁹⁹ where *f* can represent any relationship between pin A_i and cor-⁴⁰⁰ ner C_k . The pin embedding p_{A_i} and the corner embedding q_{C_k} ⁴⁰¹ can be extracted feature vectors as described in Section IV-C. ⁴⁰² The interaction function *f* can be optimized by employing ⁴⁰³ target functions that minimize the discrepancy between $\hat{y}_{A_iC_k}$ ⁴⁰⁴ and $y_{A_iC_k}$, where $y_{A_iC_k}$ refers to the corresponding element in ⁴⁰⁵ the pin-corner matrix as described in (5).

406 C. Neural Collaborative Filtering (NCF) and Training 407 Features

Since the identification of timing variant pins involves many factors (e.g., topological complexity, operating condition), it is crucial to find an interaction function f that can capture nonlinear relationships between pin features and their timing variability under different corners. Thus, we employ the NCF model [20], which consists of fully connected neural

TABLE II Corner Features for Training

Feature	Description
process	The process of the corner (fast: 0.9, typical: 0.6, slow: 0.3)
voltage	The operating voltage of the corner
temperature	The operating temperature of the corner
inv_cell_rise	The flattened cell-rise lookup table of the inverter
inv_rise_transition	The flattened rise-transition lookup table of the inverter
inv_cell_fall	The flattened cell-fall lookup table of the inverter
inv_fall_transition	The flattened fall-transition lookup table of the inverter

network layers, as shown in Fig. 10. In contrast to simple 414 interaction functions, such as the inner product, the NCF 415 model demonstrates the potential to capture complex and 416 nonlinear relationships between pins and corners. 417

In our NCF model, each input vector consists of the pin ⁴¹⁸ feature vector p_{A_i} and the corner feature vector q_{C_k} . For ⁴¹⁹ pin features, we adopt the same circuit topology features ⁴²⁰ as our single-corner timing macro modeling framework, as ⁴²¹ described in Table I and Section II-E1. On the other hand, ⁴²² as shown in Table II, corner features include the temperature, ⁴²³ voltage, and process of the corner. Furthermore, given that an ⁴²⁴ inverter consists of a pMOS and an nMOS, it can effectively ⁴²⁵ represent the switching characteristics of the corresponding ⁴²⁶ corner library. Thus, we also incorporate the elements in the ⁴²⁷ timing lookup tables of the inverter cell as our corner features. ⁴²⁸ Lookup tables of other primitive cells (e.g., NAND, AND, ⁴²⁹ etc.) might also be included to further enhance the model's ⁴³⁰ learning quality. ⁴³¹

After the extraction and concatenation of pin features p_{A_i} ⁴³² and corner features q_{C_k} , the corresponding timing variability ⁴³³ $\hat{y}_{A_iC_k}$ can be inferred as follows: ⁴³⁴

$$\hat{y}_{A_iC_k} = f_{\Phi}\left(\left[p_{A_i}, q_{C_k}\right]\right) \tag{7} \quad 435$$

where $[\cdot, \cdot]$ is the concatenation operator, and f_{Φ} is the 436 interaction function with a set of parameters Φ .

In our NCF model, we use two layers of fully connected $_{438}$ neural network. Thus, the interaction function f_{Φ} can be further $_{439}$ expressed as $_{440}$

$$f_{\Phi}\left(\left[p_{A_{i}}, q_{C_{k}}\right]\right) = \sigma\left(f_{\Phi_{2}}\left(\tanh\left(f_{\Phi_{1}}\left(\left[p_{A_{i}}, q_{C_{k}}\right]\right)\right)\right)\right)$$
(8) 441

where $\Phi = {\Phi_1, \Phi_2}, \Phi_1$, and Φ_2 correspond to the parameters of the first and the second NCF layer, respectively, tanh(·) 443 denotes the hyperbolic tangent function which serves as the 444 activation function, and $\sigma(\cdot)$ is the sigmoid function which 445 maps the predicted values to the range of [0, 1]. 446

Since the target $y_{A_iC_k}$ of each training data $[p_{A_i}, q_{C_k}]$ is of a ⁴⁴⁷ binary value, we adopt the binary classification loss function ⁴⁴⁸ to optimize the model ⁴⁴⁹

$$\mathcal{L} = -\sum_{(A_i, C_k) \in \mathbb{X}} y_{A_i C_k} \log \hat{y}_{A_i C_k} + (1 - y_{A_i C_k}) \log(1 - \hat{y}_{A_i C_k})$$
⁴⁵⁰

(9) 451

where X denotes the training label set which will be discussed 452 in Section IV-D. We use the Adam optimizer [21] to minimize 453 the loss defined by (9). Other design choices (e.g., increasing 454 the number of neural network layers, using different activation 455 functions, etc.) might be adopted to further improve the 456 performance. 457

Fig. 11. (a) Training label generation flow. (b) Flow of NCF model training, prediction, and timing macro model generation on testing data.

Fig. 12. (a) Intra-design/corner set matrix completion. (b) Inter-design/corner set matrix completion. Initially, timing variability in the purple region is known, while the goal is to infer the timing variability of the white region.

458 D. Training Label Generation

To enhance the capability of timing variant pin identification 459 of our NCF model, high-quality training labels are essential. 460 Drawing from the achievements of our single-corner timing 461 macro modeling framework, we leverage two key processes, 462 463 insensitive pins filtering and TS evaluation, to generate our 464 training labels. The details of these processes are presented ⁴⁶⁵ in Fig. 7 and Section II-D. By extending the concepts of (1) 466 and (2), we can define the TS in the context of multi-corner 467 timing macro modeling

$$\operatorname{TS}_{A_{i}C_{k}} = \operatorname{AVG}_{b \in \mathbb{B}} \left(\frac{\Delta slew_{A_{i}C_{k}}^{b} + \Delta at_{A_{i}C_{k}}^{b} + \Delta rat_{A_{i}C_{k}}^{b} + \Delta slack_{A_{i}C_{k}}^{b}}{4} \right)$$

$$(10)$$

470
$$\Delta slew_{A_iC_k}^b = \frac{1}{|PI \cup PO|} \sum_{P \in PI \cup PO} \frac{slew_{PC_k, \text{after}}^b - slew_{PC_k, \text{before}}^b}{slew_{PC_k, \text{before}}^b}$$
(11)

⁴⁷¹ where $TS_{A_iC_k}$ denotes the TS of pin A_i under timing corner C_k , ⁴⁷² \mathbb{B} denotes the set of boundary timing constraints, $slew_{PC_k, before}^{b}$ ⁴⁷³ and $slew^b_{PC_k, after}$ denote the slew value at boundary pin *P* under ⁴⁷⁴ corner C_k before and after the removal of A_i , respectively, ⁴⁷⁵ and $\Delta at_{A_iC_k}^{b}$, $\Delta rat_{A_iC_k}^{b}$, and $\Delta slack_{A_iC_k}^{b}$ can be obtained similar ⁴⁷⁶ to (11). After the TS evaluation, we have to convert the TS 477 values into binary to fill in the pin-corner matrix. In our work, ⁴⁷⁸ a pin A_i is deemed timing variant under a corner C_k if and only

if the corresponding TS is larger than a threshold t_{ν} . That is 479

$$y_{A_iC_k} = \begin{cases} 1, & \text{if } \operatorname{TS}_{A_iC_k} > t_v \\ 0, & \text{otherwise} \end{cases}$$
(12) 480

where t_v is set as 0.0001 in our experiments.

However, the computational cost of the TS evaluation flow 482 increases linearly with the number of corners, making it 483 excessively time-consuming to evaluate TS for all pins across 484 all corners, particularly in large-scale training designs. To 485 expedite the generation of training labels, we also incorporate 486 NCF model and matrix completion into our training label 487 generation flow, as depicted in Fig. 11(a). Our approach begins 488 by performing insensitive pins filtering on each corner and 489 design, which involves a one-time timing propagation and 490 therefore does not consume significant time. Subsequently, 491 only the pins that have not been filtered out in at least one of 492 the corners are considered for the TS evaluation step. For each 493 large training design, we randomly select a subset of corners 494 and generate TS values for the remaining pins under those 495 corners, while TS values of small training design are generated 496 across all corners. Then, we convert TS values to timing 497 variability and build the pin-corner matrix. By employing 498 NCF model training and prediction, we can infer the timing 499 variability for the unselected corners. Fig. 12(a) visualizes the 500 matrix completion process. Timing variability for all pins from 501 small training designs is already known, whereas for pins in 502 large training designs, timing variability is only evaluated for 503 a subset of corners. The goal is to infer the timing variability 504 within the white part. Given that the known timing variability 505 spans across all designs and corners, we refer to this approach 506 as intra-design/corner set matrix completion. 507

E. Training Techniques—Data Augmentation With mixup 508

Now, intuitively, we can utilize the training features from 509 Tables I and II and the training labels generated from 510 Section IV-D to start the training of our NCF model. However, 511 due to the nature of timing graphs, few pins are actually 512

⁵¹³ influential in the overall timing accuracy. Consequently, there ⁵¹⁴ exists a scarcity of positive elements (i.e., $y_{A_iC_k} = 1$) in ⁵¹⁵ the pin-corner matrix (less than 10% in most designs). The ⁵¹⁶ overwhelmingly large portion of timing invariant data makes ⁵¹⁷ it hard for the model to distinguish critical but rare timing ⁵¹⁸ variant pins from hundreds of thousands of pins in a large ⁵¹⁹ circuit design. To mitigate the label imbalance issue, we utilize ⁵²⁰ *mixup* [22], a simple yet effective data-augmentation approach ⁵²¹ that generates pseudo-training data by interpolation.

We first group all pin-corner pairs with training label 1 as the positive set \mathbb{X}^+ : $\{(A_i, C_k) | (A_i, C_k) \in \mathbb{X} \text{ and} \}$ 224 $y_{A_iC_k} = 1\}$ and those with training label 0 as the negative set 225 \mathbb{X}^- : $\{(A_j, C_l) | (A_j, C_l) \in \mathbb{X} \text{ and } y_{A_jC_l} = 0\}$. In each training 226 iteration, for each pin-corner pair (A_i, C_k) in \mathbb{X}^+ , we sample 227 one pin-corner pair (A_j, C_l) from the negative set \mathbb{X}^- . Then, 228 the corresponding pin and corner features form a feature tuple 229 $(p_{A_i}, q_{C_k}, p_{A_j}, q_{C_l})$. After that, we interpolate each data pair 230 with a coefficient λ sampled from the Beta distribution to 231 generate the augmented data

532
$$\tilde{p}_{A_{ij}} = \lambda p_{A_i} + (1 - \lambda) p_{A_j}$$

$$\tilde{q}_{C_{kl}} = \lambda q_{C_k} + (1 - \lambda) q_{C_l}$$

534
$$\tilde{\mathcal{Y}}A_{ij}C_{j}$$

533

$$\tilde{y}_{A_{ij}C_{kl}} = \begin{cases} 1, & \text{if } \lambda y_{A_iC_k} + (1-\lambda)y_{A_jC_l} > 0.5 \\ 0, & \text{otherwise.} \end{cases}$$

⁵³⁵ After generating the augmented data $(\tilde{p}_{A_{ij}}, \tilde{q}_{C_{kl}}, \tilde{y}_{A_{ij}C_{kl}})$, we can ⁵³⁶ optimize the NCF model by rewriting the loss function (9) as ⁵³⁷ follows:

538
$$\mathcal{L} = -\sum_{(A_i, C_k) \in \mathbb{X}^+} [\tilde{y}_{A_{ij}C_{kl}} \log \hat{y}_{A_{ij}C_{kl}} + (1 - \tilde{y}_{A_{ij}C_{kl}}) \log(1 - \hat{y}_{A_{ij}C_{kl}})]$$

540 where

541 $\hat{y}_{A_{ii}C_{kl}} = f_{\Phi}([\tilde{p}_{A_{ii}}, \tilde{q}_{C_{kl}}]).$

As shown in Fig. 10, by interpolating the pin and corner fat features with opposite timing variability, the model is forced to learn more comprehensive and distinguishable features for timing variant pins and thus make more precise inferences on fate new layouts or unseen corners.

547 F. Testing Data Prediction

After completing the training label generation and data augmentation, we perform NCF model training and prediction to identify timing variant pins in the testing designs, as shown in Fig. 11(b). Unlike the intra-design/corner set matrix completion discussed in Section IV-D, where the timing variability of pins from all designs is known, in this case, the matrix completely unseen testing designs. Furthermore, we assume that there may exist unseen corners in the testing data. Therefore, we refer to this approach as *inter-design/corner set matrix completion*. Fig. 12(b) visualizes this matrix completion process.

Once we have identified the timing variant pins, we proceed to generate timing macro models for each testing design under each corner, employing a process similar to single-corner

TABLE III

TRAINING DESIGN STATISTICS. IN EXPERIMENTS REGARDING THE Acceleration of Training Label Generation in Section V-C4, the Left 13 Designs Serve as "Small" Training Designs While the Right Six Designs Are "Large" Training Designs

Design	#Pins	#Cells	#Nets	Design	#Pins	#Cells	#Nets
s1196_eval	2181	823	791	usb_funct	48243	15992	15911
s1494_eval	2584	976	951	systemcaes	21971	6873	6790
s27_eval	94	40	36	wb_dma	13125	4627	4419
s344_eval	638	251	225	tv80	17038	5331	5317
s349_eval	651	261	235	ac97_ctrl	42438	14473	14435
s386_eval	641	245	232	pci_bridge32	59879	19426	19274
s400_eval	760	287	260				
s510_eval	980	382	369				
s526_eval	1002	381	354				
crc32d16N	1283	527	495				
usb_phy_ispd	2545	957	938				
systemcdes	10282	3638	3596				
aes_core	66751	23327	23199				

TABLE IV Testing Designs Statistics

Design	#Pins	#Cells	#Nets
mgc_edit_dist_iccad_eval	581319	224113	224101
vga_lcd_iccad_eval	768050	286597	286498
leon3mp_iccad_eval	4167632	1534489	1534410
netcard_iccad_eval	4458141	1630171	1630161
leon2_iccad_eval	5179094	1892757	1892672
mgc_edit_dist_iccad	450354	164266	164254
vga_lcd_iccad	679258	259251	259152
leon3mp_iccad	3376832	1248058	1247979
netcard_iccad	3999174	1498565	1498555
leon2_iccad	4328255	1617069	1616984
mgc_matrix_mult_iccad	492568	176084	174484

timing macro modeling, as depicted in Fig. 8. The distinction 563 lies in the pin preservation step, which is now determined 564 based on the pin-corner matrix. 565

V. EXPERIMENTAL RESULTS

566

567

A. Experimental Settings

In our framework, the training and prediction of both NCF 568 models and GNN models are implemented in the Python3 569 programming language, while the insensitive pins filtering, 570 TS evaluation, and timing macro model generation are implemented in the C++ programming language. The experiments 572 are conducted on a Linux workstation with a 3.7-GHz CPU, 573 192 GB RAM, and an NVIDIA RTX 3090 GPU. 574

For the experiments regarding single-corner timing macro 575 modeling, we adopt the benchmark suite provided by the 576 TAU 2016 [9] and TAU 2017 [10] contests as listed in 577 Tables III and IV. For the experiments regarding multi-corner 578 timing macro modeling, we also adopt the circuit designs 579 from these two contests. As for the multi-corner library, we 580 adopt the Synopsys SAED 32/28nm Digital Standard Cell 581 Library [23], as the TAU libraries do not support multi- 582 corner functionality. We use 27 base characterization corners 583 in our experiments, as listed in Table V. The first and second 584 characters in a corner's name denote its nMOS and pMOS 585 processes, respectively, (f, t, and s represent fast, typical, 586 and slow, respectively). The central segment of a corner's 587 name signifies the voltage, while the final segment denotes 588 the temperature. For instance, "tt1p05vn40c" corresponds to 589 typical nMOS and pMOS processes, 1.05 V, and -40°C. In 590 each corner library, a total of 314 cells are characterized. We 591

TABLE V Corner List

ff0p85v125c	ff0p85v25c	ff0p85vn40c	ff0p95v125c	ff0p95v25c
ff0p95vn40c	ff1p16v125c	ff1p16v25c	ff1p16vn40c	ss0p7v125c
ss0p7v25c	ss0p7vn40c	ss0p75v125c	ss0p75v25c	ss0p75vn40c
ss0p95v125c	ss0p95v25c	ss0p95vn40c	tt0p78v125c	tt0p78v25c
tt0p78vn40c	tt0p85v125c	tt0p85v25c	tt0p85vn40c	tt1p05v125c
tt1p05v25c	tt1p05vn40c			

have aligned the cell names in TAU 2016 and TAU 2017 circuit
 netlists with those in the SAED libraries.

In our experiments, we assess timing accuracy by comparing the timing analysis results of the timing macro model with the flat circuit design. We adopt iTimerC 2.0 [14] as the reference timer. On the other hand, the evaluation of macro model size is based on the size of the early library associated with the timing macro model.

600 B. Results on Single-Corner Timing Macro Modeling

First, we evaluate our single-corner timing macro modeling framework and compare the results with state-of-the-art works. Note that in our experiments, we utilize only the first eight basic features in Table I, along with the *is_CPPR* feature. This selection is made to enhance the overall performance.

Table VI shows the results on TAU 2016 [9] and TAU 606 607 2017 [10] benchmarks considering CPPR and the compar-⁶⁰⁸ isons with two state-of-the-art ILM-based works iTimerM [3] and [4]. Among all the criteria, max error and model file size 609 610 are viewed as the most crucial ones. Our framework achieves 611 extremely high-timing accuracy as all the max errors are less 612 than 0.1 ps, which is same as iTimerM [3] and 9 times better 613 than [4]. As for model file size, our result is about 10% smaller 614 than iTimerM [3] and 45% smaller than [4]. To summarize, 615 our framework preserves the highest-timing accuracy in terms 616 of max errors among the state-of-the-art works, while further 617 improving the model size by 10% than the same-accuracy-618 level work. Our framework also achieves similar or even better 619 results in terms of model generation performance and model usage performance. The average errors of our framework 620 are slightly higher than those of iTimerM [3]; however, 621 622 the difference is only a few femtoseconds and thus can be 623 neglected.

In Table VII, we demonstrate how domain knowledge can 624 625 enhance GNN model training across various timing models 626 or modes, using CPPR as a case study. As mentioned in 627 Section II-E, multiple-fan-out pins of clock networks are 628 crucial for CPPR calculation. Thus, we could add a dedicated 629 training feature for CPPR to indicate this kind of pins, 630 called *is CPPR*. We adopt the results of iTimerM [3] as the 631 baseline and calculate the differences and ratios as described 632 in Table VI. Before adding is CPPR, our framework could 633 already achieve the same timing accuracy as iTimerM [3] while reducing the model size by 6%. After the is CPPR 634 635 feature is included, our framework still preserves the same 636 timing accuracy while improving the model size by 10%. The 637 result tells that our framework could achieve superior quality 638 with only the basic features, while the dedicated features could 639 capture the timing properties of designs more precisely.

Fig. 13. Separated TS distribution of *systemcaes* based on the insensitive pins filtering.

Table VIII displays the results on the TAU 2017 [10] ⁶⁴⁰ benchmark without CPPR. Our results are compared with ⁶⁴¹ the ILM-based work iTimerM [3] and the ETM-based work ⁶⁴² ATM [5]. In comparison with ATM [5], our framework ⁶⁴³ achieves 9 times better-max error and 25 times better-average ⁶⁴⁴ error, but it suffers from a larger model size. It is as our ⁶⁴⁵ expectation since our framework is ILM-based while ATM [5] ⁶⁴⁶ is ETM-based. Besides, we also achieve 17 times faster model ⁶⁴⁷ generation runtime than ATM [5]. As for the ILM-based work ⁶⁴⁸ iTimerM [3], we preserve the same timing accuracy while ⁶⁴⁹ improving the model size by 9%. The result demonstrates ⁶⁵⁰ the applicability and generality of our framework on different ⁶⁵¹ timing modes (CPPR on and CPPR off), and it may be further ⁶⁵² inferred to various timing delay models and modes.

As mentioned in Section II-D, the goal of the insensitive 654 pins filtering is to exclude noncritical pins rapidly, under the 655 premise that the timing accuracy is not degraded. Fig. 13 656 shows the timing sensitivities of pins in the training design 657 systemcaes. TS of pins that are filtered out are shown in the 658 left histogram, and those of the potential sensitive pins are 659 shown in the right histogram. It can be seen that a majority 660 of filtered pins indeed have zero TS, while many remained 661 pins have nonzero TS. It confirms the consistency between the 662 insensitive pins filtering and the TS evaluation, which implies 663 the insensitive pins filtering is suitable for accelerating the 664 training data generation flow. To further ensure the timing 665 accuracy is not degraded by the insensitive pins filtering, we 666 conduct an experiment in which the training labels of all the 667 remained pins after the insensitive pins filtering are set to 1. 668 The result is shown in Table IX. The results of iTimerM [3] 669 are adopted as the baseline, and the differences and ratios are 670 calculated as described in Table VI. The results achieve the 671 same timing accuracy as iTimerM [3] which is of the best 672 accuracy among the previous works. Therefore, it is supported 673 that the insensitive pins filtering does not degrade the resulting 674 timing accuracy. 675

Finally, when we encounter new benchmarks under the same ⁶⁷⁶ NLDM libraries, we only need to consider the GNN model ⁶⁷⁷ inference runtime and the model generation runtime since our ⁶⁷⁸ framework is available on general designs under the NLDM. ⁶⁷⁹ The GNN model inference time is usually much less than ⁶⁸⁰ the model generation time listed in the above tables. Thus, ⁶⁸¹ our framework spends comparable or even shorter runtime ⁶⁸² than previous work for unseen test data under the NLDM. As ⁶⁸³ for other timing delay models, such as AOCV, POCV, and ⁶⁸⁴ CCS, we need to further consider the training data generation ⁶⁸⁵ time and the GNN model training time. However, since our ⁶⁸⁶

TABLE VI

SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2016 [9] AND TAU 2017 [10] BENCHMARKS WITH CPPR. FOR THE MODEL FILE SIZE, WE ADOPT THE SIZE OF THE LIBRARY FOR LATE TIMING. DIFFERENCE 1 AND RATIO 1 ARE COMPARED WITH ITIMERM [3]. DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH [4]. DIFFERENCE = COMPARED RESULT – OUR RESULT. RATIO = COMPARED RESULT/OUR RESULT. NOTE THAT [4] IS ONLY EVALUATED ON TAU 2016 BENCHMARK IN THEIR WORK

Design		Avg. Error	Max Error		Model File Size	Generation Runtime	Generation Memory	Usage Runtime	Usage Memory
		(ps)	(ps)		(MB)	(s)	(MB)	(s)	(MB)
	Ours	0.0000	0.007	Ours	56	11	1087	8	475
mgc_edit_dist_iccad_eval	iTimerM	0.0000	0.007	iTimerM	64	10	1043	8	550
	[4]	N.A.	0.158	[4]	79	15	5	4	5
	Ours	0.0006	0.040	Ours	45	12	1204	6	383
vga_lcd_iccad_eval	iTimerM	0.0006	0.040	iTimerM	50	13	1208	7	402
	[4]	N.A.	0.255	[4]	72	24	399	4	5
	Ours	0.0004	0.052	Ours	35	50	4908	5	324
leon3mp_iccad_eval	iTimerM	0.0004	0.052	iTimerM	45	58	4807	6	395
	[4]	N.A.	0.220	[4]	86	78	5	5	5
	Ours	0.0000	0.004	Ours	213	89	6609	29	1757
netcard_iccad_eval	iTimerM	0.0000	0.004	iTimerM	220	65	6513	29	1822
	[4]	N.A.	0.203	[4]	372	101	12616	23	4332
	Ours	0.0002	0.016	Ours	369	89	8298	64	3034
leon2_iccad_eval	iTimerM	0.0002	0.016	iTimerM	372	82	7865	61	3056
	[4]	N.A.	0.241	[4]	676	105	15299	38	5315
TALL 2016 American	Difference 1	0.0000	0.000	Ratio 1	1.116	0.961	0.975	1.099	1.094
TAU 2016 Average	Difference 2	N.A.	0.192	Ratio 2	1.809	1.448	0.818	0.738	0.851
man adit diat issaid	Ours	0.0029	0.052	Ours	60	16	1054	8	514
mgc_edit_dist_iccad	iTimerM	0.0003	0.052	iTimerM	66	12	1063	9	537
was lad issued	Ours	0.0024	0.080	Ours	56	16	1455	7	474
vga_lcd_iccad	iTimerM	0.0023	0.080	iTimerM	58	15	1429	8	487
1	Ours	0.0031	0.046	Ours	37	68	5407	5	332
leon3mp_iccad	iTimerM	0.0016	0.046	iTimerM	46	67	5281	6	406
	Ours	0.0013	0.029	Ours	239	101	7814	35	1938
netcard_iccad	iTimerM	0.0003	0.029	iTimerM	248	98	7545	33	1993
1	Ours	0.0027	0.095	Ours	438	125	8171	62	3613
leon2_iccad	iTimerM	0.0013	0.095	iTimerM	440	109	8049	64	3625
TAU 2017 Average	Difference	-0.0013	0.000	Ratio	1.084	0.903	0.984	1.070	1.065

TABLE VII SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS WITH AND WITHOUT CPPR-DEDICATED FEATURES

Benchmark		Avg. Error	Max Error		Model File Size	Generation Runtime	Generation Memory	Usage Runtime	Usage Memory
TAU2016 (avg.)	Difference Before	0.0000	0.000	Ratio Before	1.064	1.055	0.959	1.133	1.048
IA02010 (avg.)	Difference After	0.0000	0.000	Ratio After	1.116	0.961	0.975	1.099	1.094
TAU2017 (avg.)	Difference Before	-0.0001	0.000	Ratio Before	1.060	0.828	0.994	1.115	1.037
TAU2017 (avg.)	Difference After	-0.0013	0.000	Ratio After	1.084	0.903	0.984	1.070	1.065

⁶⁸⁷ framework could be directly applied to perform timing macro ⁶⁸⁸ modeling no matter which timing model is chosen, users do ⁶⁸⁹ not need to spend a great deal of time designing specific ⁶⁹⁰ algorithms for different timing delay models and tuning a ⁶⁹¹ bunch of parameters. As a consequence, our framework still ⁶⁹² shows high applicability and efficiency on the timing macro ⁶⁹³ modeling problem.

694 C. Results on Multi-Corner Timing Macro Modeling

1) Effectiveness of Our Multi-Corner Framework: In this section, we compare our multi-corner timing macro modeling framework with the multi-corner extensions of state-of-theart single-corner timing macro modeling frameworks. The results of iTimerM [3] are obtained by directly conducting the iTimerM algorithm flow on each specific corner. For the experiments of our single-corner timing macro modeling framework (hereafter referred to as "[6]" to avoid ambiguity rog in this section), training data for each corner is generated first, and subsequently distinct GNN models are trained for each rof individual corner.

⁷⁰⁶ To ensure fair comparisons, for experiments in ⁷⁰⁷ Sections V-C1 and V-C2, all the training designs from Table III are categorized as "small" during the training label 708 generation process (as shown in Fig. 11); that is, the timing 709 variability of all the pins is evaluated under all the corners. 710 Note that LibAbs [2], [4] and ATM [5] do not support the 711 multi-corner SAED library, and thus they are not included in 712 the comparison in this section. 713

Table X presents the experimental results on TAU 2016 and 714 TAU 2017 benchmarks listed in Table IV over the 27 corners. 715 Here, the "average" max error (*resp.* model size) represents 716 the mean values of the maximum timing errors (*resp.* timing 717 macro model size) across the 27 corners, while the "max" 718 max error (*resp.* model size) indicates the highest values of the 719 maximum timing errors (*resp.* timing macro model size) across 720 the 27 corners. Note that the results in Table X are without 721 CPPR because the SAED library does not provide separate 722 early and late cell libraries. Nevertheless, incorporating CPPR 723 into our framework would pose no significant challenge, as 724 we can easily integrate the *is_CPPR* feature in our pin feature 725 vector. 726

Compared to the state-of-the-art algorithmic work 727 iTimerM [3], our framework demonstrates a 16% improvement 728 in model size while maintaining the same level of timing 729 accuracy, with an average max error difference of less than 730

SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2017 BENCHMARK WITHOUT CPPR. DIFFERENCE 1 AND RATIO 1 ARE COMPARED WITH ITIMERM [3]. DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH ATM [5]. DIFFERENCE = COMPARED RESULT – OUR RESULT. RATIO = COMPARED RESULT/OUR RESULT. WE ADDITIONALLY INCLUDE THE CIRCUIT mgc_matrix_mult_iccad TO EVALUATE SINCE ATM [5] ALSO ADOPTS IT AS ONE TEST CASE

Design		Avg. Error (ps)	Max Error (ps)		Model File Size (MB)	Generation Runtime (s)	Generation Memory (MB)	Usage Runtime (s)	Usage Memory (MB)
	Ours	0.0033	0.052	Ours	59	14	1069	9	563
mgc_edit_dist_iccad	iTimerM	0.0007	0.052	iTimerM	65	13	1062	9	523
	ATM	0.0960	0.402	ATM	2	833	N.A.	0.36	N.A.
	Ours	0.0026	0.080	Ours	52	18	1457	7	442
vga_lcd_iccad	iTimerM	0.0023	0.080	iTimerM	55	17	1420	9	450
	ATM	0.0400	0.160	ATM	0.3	85	N.A.	0.06	N.A.
	Ours	0.0033	0.046	Ours	31	78	5392	5	275
leon3mp_iccad	iTimerM	0.0018	0.046	iTimerM	31	102	5257	4	286
	ATM	0.1070	0.460	ATM	0.6	740	N.A.	0.09	N.A.
	Ours	0.0033	0.029	Ours	226	124	7804	32	1795
netcard_iccad	iTimerM	0.0005	0.029	iTimerM	229	104	7539	33	1838
	ATM	0.0540	0.246	ATM	1.6	618	N.A.	0.27	N.A.
	Ours	0.0027	0.095	Ours	408	193	8156	60	3378
leon2_iccad	iTimerM	0.0013	0.095	iTimerM	410	152	7782	59	3390
	ATM	0.0400	0.240	ATM	2.4	1055	N.A.	0.34	N.A.
	Ours	0.0032	0.054	Ours	124	27	1106	18	924
mgc_matrix_mult_iccad	iTimerM	0.0020	0.054	iTimerM	171	29	1114	24	1098
	ATM	0.1300	0.450	ATM	12	629	N.A.	1.63	N.A.
Average	Difference 1	-0.0016	0.000	Ratio 1	1.093	0.980	0.978	1.085	1.033
Average	Difference 2	0.0748	0.267	Ratio 2	0.028	17.910	N.A.	0.029	N.A.

TABLE IX VALIDATION ON INSENSITIVE PINS FILTERING

Benchmark	Avg. Error	Max Error	Model File Size
TAU2016	0.0000	0.000	1.040
TAU2017	0.0000	0.000	1.009

731 0.2 ps. Moreover, considering the maximum of max error 732 and model size, our framework reduces the timing macro 733 model size by over 20% while maintaining a timing error difference of less than 0.1 ps. Compared to the learning-734 735 based approach [6], our framework exhibits a similar trend, showcasing a 10% improvement in average model size while 736 737 keeping the timing error difference below 0.2 ps. Similarly, 738 the results are even better when considering the maximum of 739 max error and model size. The experimental results validate 740 the precise identification of timing variant pins in each corner 741 by our framework, leading to highly compact timing macro 742 models. Furthermore, the superior performance observed in 743 terms of the maximum of max error and model size suggests 744 that our framework effectively captures the relationship 745 between each pin and each specific corner, ensuring stable 746 performance across all corners.

In addition to timing accuracy and timing macro model 747 748 size, our framework also exhibits outstanding performance 749 in terms of runtime. As shown in Table XI(a), our framework achieves approximately a 16X faster model training 750 time compared to [6]. The main reason is that the GNN 751 752 models used in our single-corner framework [6] are specific each corner. Consequently, experiments of [6] necessitated 753 to 754 training 27 separate GNN models. In contrast, our NCF 755 model in our multi-corner framework accounts for all the 756 designs and corners involved and thus requires only one ⁷⁵⁷ model that merely takes 4.12 s per training epoch. It is 758 important to note that the time spent on model tuning has not been considered here, and it is obvious that fine-tuning 759 the parameters for 27 models is much more time-consuming 760 than for a single model. The speedups will be even more 761 significant for advanced technology nodes with hundreds or 762 even thousands of corners. Furthermore, Table XI(b) compares 763 the time required to identify and generate a file containing the 764 timing variant pins for the 11 designs listed in Table IV for 765 one corner. All three frameworks exhibit similar performance 766 in this aspect. Additionally, it is worth noting that our 767 framework is able to identify timing variant pins for unseen 768 designs. Therefore, it is reasonable to compare the model 769 inference time of our framework with the overall runtime of 770 iTimerM [3].

To further analyze the results of multi-corner timing 772 macro modeling, we present 3-D surface plots that illustrate 773 variations in maximum errors and model sizes for various 774 corners and designs, as depicted in Fig. 14. These visual- 775 izations are based on the experimental results presented in 776 Tables X and XII. Each of the surface plots contains 297 777 data points (27 corners \times 11 designs). In comparison with 778 model sizes, the max errors show more drastic changes across 779 various corners. This phenomenon aligns with the inherent 780 characteristics of timing macro models, wherein the mere 781 addition or removal of a small number of timing-critical 782 pins can induce significant alterations in timing behavior. 783 Nevertheless, our multi-corner framework maintains a max 784 error of less than 2.0 ps for all the corners and designs, 785 which is comparable to the existing works. Additionally, we 786 can observe from Fig. 14(f) that the model sizes of our 787 single-corner framework [6] fluctuate wildly across different 788 corners. It is as expected given that this approach necessitates 789 a unique GNN model for each corner. Consequently, this 790 model-by-model strategy may result in unstable performance 791 due to the uncertainties inherent in the training processes 792 for each GNN instance. In contrast, as shown in Fig. 14(g), 793

TABLE X

Multi-corner Timing Macro Modeling Experimental Results on TAU 2016 and TAU 2017 Benchmarks Over 27 Corners. Average Error and Max Error Are Compared by Difference, Where Difference = Compared Result – Our Result. Macro Model Size Is Compared Based on Ratio, Where Ratio = Compared Result/Our Result

	iTimerM [3]					Our Single-Corner [6]						Our N	/ulti-Cori		
Design	Average	Max Err	or (ps)	Model Si	ze (MB)	Average	Max En	or (ps)	Model Siz	ze (MB)	Average	Max Err	or (ps)	Model Si	ze (MB)
	Error (ps)	average	max	average	max	Error (ps)	average	max	average	max	Error (ps)	average	max	average	max
mgc_edit_dist_iccad_eval	0.0005	0.217	1.293	66.7	69.0	0.0008	0.183	0.613	87.4	101.0	0.0188	0.702	1.855	54.1	55.0
vga_lcd_iccad_eval	0.0005	0.064	0.309	65.4	78.0	0.0017	0.284	0.878	65.2	68.0	0.0005	0.067	0.309	80.2	96.0
leon3mp_iccad_eval	0.0004	0.118	1.031	47.0	47.0	0.0004	0.133	1.031	31.8	33.0	0.0058	0.491	1.031	36.0	36.0
netcard_iccad_eval	0.0005	0.188	1.838	219.7	220.0	0.0008	0.219	1.838	198.3	225.0	0.0021	0.352	1.838	203.9	205.0
leon2_iccad_eval	0.0004	0.146	1.771	375.0	376.0	0.0008	0.183	1.771	345.5	360.0	0.0046	0.309	0.599	371.6	373.0
mgc_edit_dist_iccad	0.0002	0.006	0.008	68.0	73.0	0.0003	0.017	0.072	74.9	86.0	0.0096	0.185	0.343	60.0	60.0
vga_lcd_iccad	0.0004	0.042	0.225	88.9	101.0	0.0016	0.232	0.969	71.9	77.0	0.0006	0.096	0.225	90.3	112.0
leon3mp_iccad	0.0003	0.078	0.132	46.0	47.0	0.0003	0.078	0.132	33.5	36.0	0.0013	0.132	0.249	36.3	37.0
netcard_iccad	0.0002	0.028	0.044	247.2	248.0	0.0003	0.031	0.062	246.8	258.0	0.0014	0.124	0.226	232.3	237.0
leon2_iccad	0.0003	0.085	0.112	435.5	436.0	0.0003	0.102	0.146	412.7	462.0	0.0010	0.141	0.240	432.9	433.0
mgc_matrix_mult_iccad	0.0003	0.034	0.132	231.4	278.0	0.0005	0.127	0.264	229.7	259.0	0.0074	0.516	0.871	118.4	119.0
Diffrence / Ratio	-0.0045	-0.192	-0.081	1.168	1.203	-0.0041	-0.139	-0.001	1.103	1.177	0.0000	0.000	0.000	1.000	1.000

Fig. 14. 3-D surface plots of max errors and model sizes across corners and designs.

⁷⁹⁴ our multi-corner framework consistently demonstrates similar
 ⁷⁹⁵ model sizes across diverse corners, indicating its adaptability
 ⁷⁹⁶ to various, and potentially unseen, timing corners.

2) Exploration of Transfer Learning-Based Approach: As 797 ⁷⁹⁸ described in Section V-B, our single-corner framework [6] achieves timing accuracy comparable to the state-of-the-799 800 art works while reducing model sizes by 10%. Therefore, to enhance the performance of multi-corner timing macro 801 ⁸⁰² modeling, an intuitive and reasonable approach is to leverage transfer learning (TL) [24] and transfer our single-corner 803 ⁸⁰⁴ results to diverse corners. Specifically, starting from a source 805 corner (we select "tt0p78v25c" in our experiments), we imple-806 ment our GNN-based single-corner framework for 20000 ⁸⁰⁷ epochs on this source corner. Subsequently, we fine-tune the ⁸⁰⁸ generated timing macro model across the remaining 26 corners ⁸⁰⁹ (listed in Table V) for 5000 epochs. The results are listed 810 in Table XII, where the differences and ratios are compared against our multi-corner framework. 811

Compared to the results in Table X, the TL-based approach achieves the most compact macro model sizes for most bia designs. However, it suffers from a significant degradation in timing accuracy. As illustrated in Fig. 14(h), we can observe the TL-based timing macro models exhibit strikingly uniform model sizes across various corners. We hypothesize that this uniformity arises due to the heavy reliance of the transferred timing macro models on the source timing macro model. ⁸¹⁹ Consequently, these transferred models fail to discern and ⁸²⁰ retain pins that are uniquely sensitive to the specific corner. ⁸²¹ This deficiency leads to significant accuracy fluctuations across ⁸²² corners, as illustrated in Fig. 14(d). We further observe that ⁸²³ the transferred timing macro models tend to consider only ⁸²⁴ clock pins during TS evaluation while ignoring all other pins, ⁸²⁵ resulting in extremely small model sizes but with high-timing ⁸²⁶ errors. ⁸²⁷

To implement the TL-based approach, we still need to ⁸²⁸ generate training data for every corner, as described in ⁸²⁹ Section IV-D, and fine-tune for each target corner. In contrast, ⁸³⁰ our multi-corner framework can produce timing macro models ⁸³¹ that are accurate and compact for various corners, even those ⁸³² we have not seen before, without any additional fine-tuning. ⁸³³ Therefore, our multi-corner framework is more efficient and ⁸³⁴ generic than the TL-based approach. ⁸³⁵

3) Results on Unseen Corners: As discussed in ⁸³⁶ Section III-A, a challenging situation occurs when dealing ⁸³⁷ with chiplets that deviate from typical corners. To validate the ⁸³⁸ applicability of our framework in such scenarios, we hide 3 ⁸³⁹ corners, "ff0p95v125c," "ss0p75vn40c," and "tt0p85v125c," ⁸⁴⁰ from our training data. Then, we train our NCF model based ⁸⁴¹ on the 24 known corners and identify timing variant pins ⁸⁴² in testing designs under both the seen and unseen corners. ⁸⁴³

TABLE XI
MODEL INFERENCE RUNTIME FOR THE 11 TESTING DESIGNS FOR ONE
CORNER

(a)) Model	training	runtime	for all	the	corners.	

		Our Single-Corner [6]	Our Multi-Corner	
	Total Training Runtime	80 minutes	5 minutes	
(b) N	Aodel inference runtin	ne for the 11 testing	designs for one c	orner.

	iTimerM [3]	Our Single-Corner [6]	Our Multi-Corner
Inference Runtime	7 minutes	6 minutes	7 minutes

TABLE XII Ablation Study on Transferring Our Single-Corner Framework

	Our Single-Corner [6] + Transfer Learning				
Design	Average	Max Error (ps)		Model Size (MB)	
	Error (ps)	average	max	average	max
mgc_edit_dist_iccad_eval	0.0188	0.702	1.855	54.0	55.0
vga_lcd_iccad_eval	0.0053	0.558	1.361	43.0	43.0
leon3mp_iccad_eval	0.0061	0.491	1.031	36.0	36.0
netcard_iccad_eval	0.0095	0.825	1.396	213.0	214.0
leon2_iccad_eval	0.0062	0.606	1.246	371.2	372.0
mgc_edit_dist_iccad	0.0096	0.185	0.343	60.0	60.0
vga_lcd_iccad	0.0039	0.290	0.541	51.0	51.0
leon3mp_iccad	0.0039	0.163	0.249	36.0	36.0
netcard_iccad	0.0062	0.268	0.369	241.0	241.0
leon2_iccad	0.0015	0.202	0.271	432.0	432.0
mgc_matrix_mult_iccad	0.0073	0.516	0.871	119.4	120.0
Diffrence / Ratio	0.0023	0.154	0.159	0.925	0.904

⁸⁴⁴ Table XIII shows the evaluation results across all the corners, 845 where the values are averaged across the 11 testing designs ⁸⁴⁶ in Table IV. It can be observed that the performance on the ⁸⁴⁷ three unseen corners is comparable to that of the 24 seen ⁸⁴⁸ corners. Moreover, the max error of the corner "ff0p95v125c" (0.0744 ps) falls in a similar range as the max errors of other 849 ⁸⁵⁰ fast/fast process corners (between 0.0595 ps and 0.0826 ps). and similar trends can also be observed on unseen corners 851 "ss0p75vn40c" and "tt0p85v125c." The results indicate that 852 our framework is able to be generalized to arbitrary corners 853 and demonstrates the potential for use in off-corner chiplets. 854 4) Acceleration of Training Label Generation: As dis-855 ⁸⁵⁶ cussed in Section IV-D, the training label generation on large 857 designs takes an extremely long runtime to complete and therefore necessitates using the NCF to speed up the training 858 859 label generation process. To validate the effectiveness of the NCF-based training label generation flow, we set the left 13 860 ⁸⁶¹ designs in Table III as the "small" training designs and the ⁸⁶² right 6 designs as the "large" training designs. For each small 863 training design, the TS and the timing variability of all pins under all corners are evaluated, while those of large training 864 865 designs are evaluated under only 6 corners, ff0p85vn40c, 866 ff1p16v125c, ss0p75v25c, ss0p95v125c, tt0p85v125c, and 867 tt1p05v25c. Table XIV shows that the NCF model realizes ⁸⁶⁸ a 4.4X speedup. It is worth noting that within the 16.8 h ⁸⁶⁹ runtime after acceleration, the NCF model training and matrix 870 completion only takes about 10 min, while most of the time 871 is spent on the TS evaluation for the six corners. Thus, the ⁸⁷² acceleration will become more significant if the total number 873 of corners increases. To further testify the quality of the 874 NCF-generated labels, we compare the predicted labels with 875 the golden labels (obtained by performing TS evaluation on 876 the remaining 21 corners). On average, the NCF model can 877 achieve almost 95% prediction accuracy. Thus, the accelerated 878 training label generation flow can significantly reduce label

TABLE XIII Evaluation Results on Unseen Corners. The Training Data Consists Solely of the Upper 24 Corners, With the Bottom Three Corners Being Encountered for the First Time During the Evaluation of the Testing Designs

Corner	Model Size (MB)	Avg. Error (ps)	Max Error (ps)
ff0p85v125c	166.3636	0.0018	0.0769
ff0p85v25c	164.1818	0.0020	0.0764
ff0p85vn40c	164.0000	0.0022	0.0826
ff0p95v25c	162.4545	0.0017	0.0693
ff0p95vn40c	159.8182	0.0018	0.0698
ff1p16v125c	166.2727	0.0017	0.0751
ff1p16v25c	161.4545	0.0015	0.0638
ff1p16vn40c	160.6364	0.0014	0.0595
ss0p75v125c	171.7273	0.0042	0.3410
ss0p75v25c	168.6364	0.0044	0.3107
ss0p7v125c	173.7273	0.0045	0.5170
ss0p7v25c	167.5455	0.0045	0.3058
ss0p7vn40c	161.4545	0.0044	0.5778
ss0p95v125c	160.0909	0.0033	0.1218
ss0p95v25c	162.2727	0.0040	0.1500
ss0p95vn40c	162.7273	0.0043	0.1891
tt0p78v125c	165.1818	0.0032	0.1179
tt0p78v25c	171.4545	0.0041	0.1621
tt0p78vn40c	172.4545	0.0044	0.2278
tt0p85v25c	166.2727	0.0036	0.1346
tt0p85vn40c	169.0909	0.0041	0.1606
tt1p05v125c	157.5455	0.0023	0.1015
tt1p05v25c	158.4545	0.0023	0.0919
tt1p05vn40c	158.6364	0.0026	0.0978
ff0p95v125c	166.4545	0.0017	0.0744
ss0p75vn40c	162.4545	0.0046	0.2858
tt0p85v125c	162.0909	0.0028	0.1015

TABLE XIV ACCELERATION OF TRAINING LABEL GENERATION

	Performance
Runtime Speedup	4.4X (= 74.7 hours / 16.8 hours)
Correctness Ratio	94.96%

generation time while maintaining the accuracy of the generated labels.

V

CONCLUSION	
	CONCLUSION

In this work, we present a novel learning-based single 882 corner timing macro modeling framework that is applicable to 883 various timing analysis models and modes. By leveraging our 884 proposed TS metric and drawing analogies between GNN and 885 timing macro modeling, our approach achieves exceptionally 886 high-timing accuracy while further improving the model size 887 than the most accurate state-of-the-art work. Furthermore, we address and formulate the multi-corner timing macro modeling 889 problem. We view the problem from the perspective of recommendation systems and transform it into a matrix completion 891 task. We introduce the concept of collaborative filtering and 892 propose an NCF-based framework to capture the complex 893 interactions between pins and corners. Through our frame- 894 work, high-quality timing macro models are generated for each 895 corner. Experimental results based on Synopsys SAED multi- 896 corner libraries [23] and TAU 2016 [9] and TAU 2017 [10] 897 benchmarks show our framework preserves extremely hightiming accuracy while reducing more than 10% of model sizes 899 compared to state-of-the-art works. Moreover, our framework 900 achieves a 16X faster model training time and accelerates the 901 training label generation process by 4.4X. Additionally, based 902 on the evaluation of our prediction results on unseen corners, 903 the applicability of our framework for off-corner chiplets is 904

⁹⁰⁵ also validated. Future work includes timing macro modeling ⁹⁰⁶ for multi-corner multi-mode (MCMM), the development of ⁹⁰⁷ unified timing macro models for multiple corners, and timing ⁹⁰⁸ macro modeling for multiple-chiplet integration or subsystems.

REFERENCES

- [1] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, "Automated 910 timing model generation," in Proc. Design Autom. Conf. (DAC), 2002, 911 pp. 146–151. 912
- [2] T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, "LibAbs: An efficient 913 and accurate timing macro-modeling algorithm for large hierarchi-914 cal designs," in Proc. 54th Design Autom. Conf. (DAC), 2017, 915
- pp. 1-6. 916 [3] P.-Y. Lee and I. H.-R. Jiang, "iTimerM: A compact and accurate timing 917
- macro model for efficient hierarchical timing analysis," ACM Trans. 918 Design Autom. Electron. Syst. (TODAES), vol. 23, no. 4, pp. 1-21, 2018. 919
- T.-Y. Lai and M. D. F. Wong, "A highly compressed timing macro-[4] 920 modeling algorithm for hierarchical and incremental timing analysis," 921 in Proc. Asia South Pac. Design Autom. Conf. (ASP-DAC), 2018, 922 pp. 166-171. 923
- [5] K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, "ATM: A high 924 accuracy extracted timing model for hierarchical timing analysis,' 925 in Proc. 26th Asia South Pac. Design Autom. Conf. (ASP-DAC), 2021, 926 pp. 278–283. 927
- [6] K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, "Timing 928 macro modeling with graph neural networks," in Proc. 59th Design 929 930
- Autom. Conf. (DAC), 2022, pp. 1219–1224. M. Andersch et al. "NVIDIA hopper architecture in-depth." 2022. [7] 931 [Online]. Available: https://developer.nvidia.com/blog/nvidia-hopper-932 architecture-in-depth/ 933
- B. Bailey. "Taming corner explosion in complex chips." 2023. https:// [8] 934 semiengineering.com/taming-corner-explosion-in-complex-chips/ 935
- [9] J. Hu, S. Chen, X. Zhao, and X. Chen, "TAU 2016 timing contest on macro modeling," 2016. [Online]. Available: https://sites.google.com/ 936 937 site/taucontest2016/ 938
- 939 [10] S. Chen and A. Khandelwal, "TAU 2017 timing contest on macro modeling," 2017. [Online]. Available: https://sites.google.com/site/ 940 taucontest2017/ 941
- Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, "A comprehensive survey on graph neural networks," *IEEE Trans. Neural* 942 [11] 943 Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, Jan. 2021. 944
- W. L. Hamilton, R. Ying, and J. Leskovec, "Inductive representation 945 [12] learning on large graphs," in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 1025–1035. 946 947
- T. N. Kipf and M. Welling, "Semi-supervised classification with graph 948 [13] convolutional networks," in Proc. Int. Conf. Learn. Represent. (ICLR), 949 2017, pp. 1-14. 950
- 951 [14] P.-Y. Lee, I. H.-R. Jiang et al., "iTimerC 2.0: Fast incremental timing and CPPR analysis," in Proc. Int. Conf. Comput.-Aided Design (ICCAD), 952 2015, pp. 890-894. 953
- [15] S. Onaissi, F. Taraporevala, J. Liu, and F. Najm, "A fast approach for 954 static timing analysis covering all PVT corners," in Proc. 48th Design 955 Autom. Conf. (DAC), 2011, pp. 777-782 956
- 957 [16] A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, ""Unobserved corner" prediction: Reducing timing analysis effort for faster design convergence in advanced-node design," in Proc. Design, Autom. Test Eur. Conf. 958 959 (DATE), 2019, pp. 168-173. 960
- 961 [17] X. Jiao, D. Ma, W. Chang, and Y. Jiang, "TEVoT: Timing error modeling of functional units under dynamic voltage and temperature variations, 962 in Proc. 57th Design Autom. Conf. (DAC), 2020, pp. 1-6. 963
- W. Fu et al., "A cross-layer power and timing evaluation method for 964 [18] 965 wide voltage scaling," in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1-6. 966
- S. Bian, M. Hiromoto, M. Shintani, and T. Sato, "LSTA: Learning-967 [19] based static timing analysis for high-dimensional correlated on-chip 968 variations," in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC), 969 970 2017, pp. 1–6.
- X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural 971 [20] collaborative filtering," in Proc. 26th Int. Conf. World Wide Web (WWW), 972 2017, pp. 173-182. 973
- 974 [21] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "Mixup: Beyond 975
- 976 [22] empirical risk minimization," 2018, arXiv:1710.09412. 977
- 978 [23] (Synopsys Inc., Sunnyvale, CA, USA). SAED_EDK32/28_CORE-
- SAED 32/28nm Digital Standard Cell Library. (2012). [Online]. 979 Available: https://solvnetplus.synopsys.com 980
- 981 [24] F. Zhuang et al., "A comprehensive survey on transfer learning," Proc. IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021. 982

Kevin Kai-Chun Chang received the B.S. degree 983 in electrical engineering from National Taiwan 984 University, Taipei, Taiwan, in 2022. He is currently 985 pursuing the Ph.D. degree with the Department 986 of Electrical Engineering and Computer Sciences, 987 University of California at Berkeley, Berkeley, CA, 988 USA. 989

His research interests lie in the design and ver-990 ification of cyber-physical systems, autonomous 991 vehicles, and electronic design automation. 992

Guan-Ting Liu received the B.S. degree in electron- 993 ics engineering with cross-discipline in computer 994 science from National Chiao Tung University, 995 Hsinchu, Taiwan, in 2018, and the Ph.D. degree 996 from the Graduate Institute of Networking and 997 Multimedia, National Taiwan University, Taipei, 998 Taiwan, in 2024.

He is currently a Research Scientist with NVIDIA 1000 Research Taiwan, Taipei, Taiwan. His research 1001 interests include machine learning, reinforcement 1002 learning, and electronic design automation. 1003

Chun-Yao Chiang received the B.S. degree in 1004 electrical engineering from National Sun Yat-sen 1005 University, Kaohsiung, Taiwan, in 2019, and the 1006 M.S. degree in electronic design automation from 1007 the Graduate Institute of Electronics Engineering, 1008 Taiwan University, Taipei, Taiwan, 1009 1010

He is currently a Software Research and 1011 Development Engineer with Synopsys Inc., 1012 Taipei, Taiwan. His current research interests 1013 physical design, include timing analysis, 1014 and IR drop analysis. 1015

Pei-Yu Lee received the Ph.D. degree in electron- 1016 ics engineering from the Institute of Electronics, 1017 National Chiao Tung University, Hsinchu, Taiwan, 1018 in 2018. 1019

He is currently a Staff Engineer with Synopsys 1020 Inc., Hsinchu, Taiwan, and his research interests 1021 include physical design, timing analysis, distributed 1022 computing, and machine-learning for EDA. 1023

Dr. Lee received Four First Place Awards from 1024 TAU Timing Contests and the 2017 TSIA Doctoral 1025 Graduate Student Award. He has served on the 1026

Program Committees for ASP-DAC and ISPD, and the Contest Chair for 1027 CADathlon at ICCAD. 1028

Iris Hui-Ru Jiang received the B.S. and Ph.D. 1029 degrees in electronics engineering from National 1030 Chiao Tung University, Hsinchu, Taiwan. 1031

She is currently a Professor with the Department 1032 of Electrical Engineering and Graduate Institute 1033 of Electronics Engineering, National Taiwan 1034 University, Taipei, Taiwan. Her current research 1035 interests include timing analysis and optimization 1036 and design for manufacturability. 1037

Dr. Jiang has served as the General Chair for 1038 ISPD, the Program Chair for ISPD and ASP-DAC, 1039

and the Associate Editor for IEEE TRANSACTIONS ON COMPUTER-AIDED 1040 DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. 1041