Multi-Corner Timing Macro Modeling With Neural Collaborative Filtering From Recommendation Systems Perspective

Kevin Kai-Chun Chan[g](https://orcid.org/0000-0002-4554-3442), Guan-Ting Liu, Chun-Yao Chiang, Pei-Yu Lee, and Iris Hui-Ru Jiang^{to}

 *Abstract***—Timing macro modeling has been widely employed to enhance the efficiency and accuracy of parallel and hierarchi- cal timing analysis. However, existing studies primarily focused on generating an accurate and compact timing macro model for single-corner libraries, making it difficult to adapt these approaches to multi-corner situations. This either incurs sub- stantial engineering effort or results in significant performance degradation. To tackle this challenge, we offer a fresh per- spective on the timing macro modeling problem by drawing inspiration from recommendation systems and formulating it as a matrix completion task. We propose a neural collaborative filtering-based framework capable of capturing the convoluted relationships between circuit pins and timing corners. This frame- work enables the precise identification of timing variant regions across different corners. Additionally, we design several training features and implement various training techniques to enhance precision. Experimental results show that our framework reduces model sizes by more than 10% compared to state-of-the-art single-corner approaches, while maintaining competitive tim- ing accuracy and exhibiting significant runtime improvements. Furthermore, when applied to unseen corners, our framework consistently delivers superior performance, demonstrating its potential for use in off-corner chiplets in a heterogeneous integration system.**

²⁵ *Index Terms***—Matrix completion, multiple corners, recommen-**²⁶ **dation systems, timing macro modeling.**

27 I. INTRODUCTION

 \sum_{29} $\sum_{\text{diming analysis has become a significant bottleneck of the}}$ S THE design complexity continues to grow rapidly, IC design flow. To address this issue, parallel and hierarchical 31 timing analysis is widely adopted, which heavily relies on timing macro modeling. As shown in Fig. [1\(](#page-0-0)a), a large design is first partitioned into several blocks; each block is then analyzed once, and a corresponding timing macro model is

Manuscript received 14 August 2023; revised 7 January 2024; accepted 6 March 2024. This work was supported in part by the National Science and Technology Council, Taiwan. This article was recommended by Associate Editor E. R. Keiter. *(Corresponding author: Iris Hui-Ru Jiang.)*

Kevin Kai-Chun Chang is with the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720 USA.

Guan-Ting Liu is with NVIDIA Research Taiwan, Taipei 114066, Taiwan. Chun-Yao Chiang is with Synopsys Inc., Taipei 110208, Taiwan.

Pei-Yu Lee is with Synopsys Inc., Hsinchu 300093, Taiwan.

Iris Hui-Ru Jiang is with the Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106319, Taiwan (e-mail: huirujiang@ ntu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2024.3383350

Fig. 1. Flows of timing macro modeling. (a) Single-corner flow. (b) Multicorner flow. The circuit is the NVIDIA GH100 GPU quoted from [\[7\]](#page-13-0).

generated to encapsulate the timing properties of the block. ³⁵ Subsequently, the timing macro model can be reused for the 36 same blocks and thus expedites the timing analysis process. In 37 order to generate an accurate and concise timing macro model, 38 timing variant pins (whose timing is affected by primary input ³⁹ (PI) slews or primary output (PO) loading) in a design should ⁴⁰ be preserved for accuracy, and timing invariant pins can be 41 reduced for compactness.

Numerous timing macro modeling approaches have been ⁴³ proposed in the literature. Most of the approaches are algo- ⁴⁴ rithmic, employing a variety of graph-based algorithms during ⁴⁵ the extraction of timing macro models $[1]$, $[2]$, $[3]$, $[4]$, $[5]$. $\frac{46}{15}$ In contrast, we present a novel machine learning-based 47 framework in $[6]$. By incorporating graph neural networks 48 (GNNs), our framework effectively captures timing variant ⁴⁹ pins, and achieves timing accuracy comparable to state-of- ⁵⁰ the-art algorithmic methods while reducing the model size ⁵¹ by 10%. Furthermore, our GNN-based framework can easily 52 be applied to various timing analysis models and modes. $\frac{53}{2}$

With the advancement of semiconductor technology, the 54 timing analysis flow now encompasses the verification of 55 numerous PVT corners (combinations of process, voltage, 56

1937-4151 \copyright 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

 and temperature parameters) [\[8\]](#page-13-7). To ensure that accurate timing analysis can be performed quickly for all the corners, it is crucial to generate a dedicated timing macro model ∞ for each corner, as illustrated in Fig. [1\(](#page-0-0)b). However, the aforementioned previous work, including our GNN-based framework, has mainly focused on single-corner timing macro modeling, making it difficult to extend to multi-corner scenar- ios. Accomplishing this either demands substantial engineering efforts or results in timing macro models with diminished accuracy and large sizes. The challenges become even more pronounced when conducting timing analysis on off-corner chiplets, where single-corner approaches are rendered imprac-tical due to the absence of characterized libraries.

 The main challenge of multi-corner timing macro modeling lies in accurately identifying the difference of timing vari- ance on pins for each corner. This is a critical factor in achieving compact model sizes and high-timing accuracy. To tackle this challenge, we formulate the identification problem as a matrix completion task and utilize principles from recommendation systems. We introduce the concept of collaborative filtering, which effectively captures simi- larities between pins and utilizes observed data to infer timing variability. Furthermore, we employ neural collab- orative filtering (NCF) to model the intricate interactions between pins and corners. Leveraging the neural network 82 layers within the NCF model, we can grasp the complex rela-83 tionships inherent in the multi-corner timing macro modeling ⁸⁴ problem.

⁸⁵ The main contributions of this work are summarized as ⁸⁶ follows.

87 1) To the best of our knowledge, our work is the first to ⁸⁸ address and formulate the multi-corner timing macro ⁸⁹ modeling problem.

 2) We offer a novel recommendation system-based perspec- tive for timing macro modeling and formulate it as a matrix completion problem. This allows us to effectively capture the relationship between pins and corners.

 3) We propose a NCF-based framework to learn the intri- cate pin-corner interactions. The NCF model not only achieves competitive timing accuracy and reduces macro 97 model sizes by more than 10% compared to the state- of-the-art works in million-gate/instance-scale designs, but also demonstrates a 16X faster model training time. Additionally, the NCF model accelerates the training label generation process by 4.4X.

¹⁰² 4) Our framework consistently preserves exceptional ¹⁰³ performance when applied to unseen corners, demon-¹⁰⁴ strating its potential for utilization in off-corner chiplets.

 The remainder of this article is organized as follows: Section [II](#page-1-0) formulates the single-corner timing macro modeling problem, reviews the previous work on single-corner tim- ing macro modeling, and details our GNN-based framework proposed in [\[6\]](#page-13-6). Section [III](#page-4-0) discusses the challenges and formulates the multi-corner timing macro modeling problem. 111 Section [IV](#page-4-1) details our multi-corner timing macro modeling 112 framework. Section [V](#page-7-0) shows experimental results. Finally, Section [VI](#page-12-0) concludes this work.

II. SINGLE-CORNER TIMING MACRO MODELING 114

A. Problem Formulation 115

In this work, we follow the problem formulation from TAU ¹¹⁶ 2016 and 2017 contests $[9]$, $[10]$, which is also adopted by 117 most previous work. The *single-corner timing macro modeling* ¹¹⁸ problem can be defined as follows.

Given a circuit netlist (*.*v* files) along with its parasitics 120 (**.spef* files) and the early and late cell libraries (**.lib* files), ¹²¹ the goal is to generate a timing macro model that encapsulates 122 the timing behaviors of the design. 123

The generated timing macro model is evaluated based on ¹²⁴ two primary criteria: 1) timing accuracy (the higher, the better) $_{125}$ and 2) the macro model size (the lower, the better). Note that ¹²⁶ there exists a tradeoff between them. Furthermore, the runtime 127 required to generate the timing macro model is also crucial. ¹²⁸

B. Previous Work ¹²⁹

Interface logic models (ILMs) and extracted timing models 130 (ETMs) [\[1\]](#page-13-1) are two pioneering single-corner timing macro ¹³¹ modeling approaches. ILM preserves circuit netlists from PI ¹³² or PO ports to the first level of registers (i.e., interface ¹³³ logic) while eliminating register-to-register paths. In con- ¹³⁴ trast, ETM consists solely of context-independent timing ¹³⁵ arcs between external pins. Subsequent works often build ¹³⁶ upon either of these two paradigms. Generally, ILM-based ¹³⁷ approaches $[2]$, $[3]$, $[4]$ achieve exceptionally high-timing 138 accuracy but suffer from larger macro model sizes. Conversely, ¹³⁹ ETM-based approaches [\[5\]](#page-13-5) can extract smaller macro models 140 at the expense of timing accuracy. Moreover, ETM-based ¹⁴¹ methods are suitable for IP-reuse scenarios, as they can ¹⁴² conceal circuit implementations, while ILM-based methods are ¹⁴³ more adaptable to advanced timing analysis modes, such as ¹⁴⁴ common path pessimism removal (CPPR).

For ILM-based approaches, LibAbs [\[2\]](#page-13-2) and its following ¹⁴⁶ work [\[4\]](#page-13-4) propose several graph reduction techniques that are 147 applied alternately to timing graphs. This iterative process ¹⁴⁸ results in a more concise timing macro model. iTimerM [\[3\]](#page-13-3) ¹⁴⁹ divides the circuit netlist into constant and variant timing ¹⁵⁰ regions, where the constant timing region is eliminated to ¹⁵¹ achieve compactness. The separation is based on the propa- ¹⁵² gation of minimum/maximum slew values, designating pins 153 with stabilized slew ranges as constant. On the other hand, 154 ATM $[5]$ builds upon the ETM paradigm. It also adopts 155 slew propagation to identify checkpoint pins, which are then 156 inserted into the ETM model to improve timing accuracy. ¹⁵⁷ Fig. [2](#page-2-0) summarizes the existing single-corner timing macro ¹⁵⁸ modeling frameworks.

To facilitate analysis efficiency, the key objective of tim- ¹⁶⁰ ing macro modeling is to strike a balance between timing ¹⁶¹ accuracy and the size of the generated timing macro model. ¹⁶² Nevertheless, previous work adopts some heuristic techniques ¹⁶³ during their model extraction, which may cause degradation ¹⁶⁴ on the solution quality. For instance, LibAbs $[2]$, $[4]$ applies 165 in-tree and out-tree graph reductions alternatively, based on ¹⁶⁶ the observation on the timing arc forms of cells or nets. ¹⁶⁷ Besides, some works need to set a threshold for variant pins ¹⁶⁸

Fig. 2. Comparison of previous work and our framework.

 identification, which requires considerable engineering effort, and the same threshold may not be applicable for various circuit designs. For example, iTimerM [\[3\]](#page-13-3) uses a threshold to separate the variant regions with the constant region, and ATM [\[5\]](#page-13-5) uses a threshold to determine which pins are dirty. Therefore, there is still room for improvement.

¹⁷⁵ *C. Overview of Our GNN-Based Framework*

 To overcome the deficiencies of prior work, we propose a GNN-based single-corner timing macro modeling frame-178 work [\[6\]](#page-13-6). GNNs have been developed to apply deep learning methods to graph data [\[11\]](#page-13-10). In a typical GNN scheme, node information is aggregated and transformed between neighbors recursively. After several neural network layers, a high-level representation of each node is extracted, which encapsulates the features and structures of the node's neighborhood.

 There are several reasons that GNN is suitable for the timing macro modeling problem. First, the evaluation of timing criti- cality on circuit pins is usually challenging for heuristic-based methods. Nevertheless, graph-learning-based methods could capture implicit properties of circuit pins and thus evaluating timing importance more precisely. Second, the aggregation of node attributes in GNN is similar to the propagation of timing values on timing graphs, as shown in Fig. [3.](#page-2-1) Consequently, the timing properties of circuit pins could be captured and learned by GNN models smoothly. Third, due to the information exchange mechanism in GNN, the final representations of adjacent nodes tend to become similar. This property is desired in timing macro modeling since neighbor pins are usually of comparable degrees of timing criticality. Lastly, it is natural to represent circuit netlists by graphs, and thus GNNs could be easily embedded into the timing macro modeling framework. Fig. [4](#page-2-2) illustrates the proposed timing macro modeling framework. In the first stage, the timing sensitivity (TS) of each circuit pin is evaluated to reflect the influence of each pin on the overall timing accuracy. Then, the training data is generated accordingly. In the second stage, we adopt GNN models to learn the properties of circuit designs and predict the timing sensitivities of testing data. Finally, starting from the ILM, timing macro models are generated based on our timing sensitivities prediction. Different from previous work, which mainly focuses on nonlinear delay model (NLDM), our framework could also be applied to other advanced node timing analysis models, such as CCS, AOCV, and POCV, or different timing modes like CPPR. The generality of our

Fig. 3. Analogy between GNN aggregation and timing propagation. Timing values, including slew, arrival time, and required arrival time are propagated through edges (blue and green arrows). On the other hand, node features of layer $l, h_i^{(l)}$ ^{*i*}, are aggregated through edges and transformed into node features of layer $l + 1$, $h_i^{(l+1)}$ (red arrows).

Fig. 4. Overview of our GNN-based single-corner timing macro modeling framework.

framework comes from the fact that timing sensitivities could ²¹³ be adaptively evaluated depending on the given timing delay ²¹⁴ model. Moreover, the GNN models could effortlessly capture ²¹⁵ the corresponding timing properties.

D. Timing Sensitivity Data Generation ²¹⁷

1) Timing Sensitivity: In order to generate a high-quality ²¹⁸ timing macro model, we need to precisely evaluate the influ- ²¹⁹ ence of each circuit pin on the timing accuracy of the whole 220 design. Then, pins with subtle influences could be waived to $_{221}$ reduce the model size, and meanwhile the timing accuracy will 222 not be degraded. 223

The lower section of Fig. [7](#page-3-0) (highlighted by red dashed ²²⁴ lines) shows how we evaluate the TS of each pin. Given the ²²⁵ input circuit graph, we first randomly generate several sets ²²⁶ of boundary timing constraints. For each timing constraint, ²²⁷ we store the corresponding timing analysis results of ILM ²²⁸ as references. In the TS evaluation stage, we remove a pin ²²⁹ from the circuit each time. After the removal, we perform ²³⁰ timing propagation based on each set of boundary timing ²³¹ constraints generated and compute the differences between ²³² the current and the reference timing values (including slew, ²³³ arrival time (at), required arrival time (rat), and slack) at the ²³⁴ boundary pins. Finally, TS of a pin (for convenience, denoted ²³⁵

Fig. 5. TS distribution of *fft_ispd*.

 as A_i in the following discussion) is set as the average of timing value differences under the different timing constraints. Equations [\(1\)](#page-3-1) and [\(2\)](#page-3-1) define the TS of pin A_i , where $\mathbb B$ denotes the collection of generated boundary timing constraints, and ²⁴⁰ *slew*^{*b*}_{*P*},before (*resp. slew*^{*b*}_{*P*},after) denotes the slew value of a boundary pin *P* under the timing constraint *b* before (*resp.* ²⁴² after) pin A_i 's removal. The definitions of $\Delta a t_{A_i}^b$, $\Delta r a t_{A_i}^b$, and ²⁴³ Δ *slack*^{*b*}_{*A_i*} are similar to that of Δ *slew*^{*b*}_{*A_i*</sup>}

$$
TS_{A_i} = AVG_{b \in \mathbb{B}} \left(\frac{\Delta slew_{A_i}^b + \Delta at_{A_i}^b + \Delta r at_{A_i}^b + \Delta s lack_{A_i}^b}{4} \right)
$$

$$
^{245}
$$

$$
^{245} \Delta slew^{b}_{A_{i}} = \frac{1}{|PI \cup PO|} \Sigma_{P \in PI \cup PO} \frac{slew^{b}_{P,\text{after}} - slew^{b}_{P,\text{before}}}{slew^{b}_{P,\text{before}}}.
$$
 (1)

 2) Insensitive Pins Filtering: Although the TS evaluation flow could accurately compute the influence of each pin on the overall timing accuracy, running the flow for all the pins is time-consuming as we need to perform timing propagation once in each iteration. To enhance the efficiency, we first observe that the majority of the pins have extremely small or even zero TS. It is due to the nature of timing graph that most of the pins have subtle influences on the overall timing accuracy. For example, the TS distribution of circuit *fft_ispd* is shown in Fig. [5,](#page-3-2) where 70% pins have zero TS, while only few pins have large TS. Therefore, if we can find a rapid screening method to filter the insensitive pins first, we could perform TS evaluation flow on the potential critical pins only.

 Timing value difference propagation is a suitable method for insensitive pins filtering. At each PI or PO port, two timing values, *t*min and *t*max, are set up. We then propagate the timing values through the design and monitor the difference between the two timing values at each pin. According to the shielding $_{265}$ effect, as shown in Fig. [6,](#page-3-3) the difference decays after several levels, and pins with small difference tend to have subtle influence on the overall timing accuracy. Inspired by previous works [\[3\]](#page-13-3), [\[5\]](#page-13-5), we choose slew to propagate from each PI. After the propagation, the slew difference (SD) at each pin is standardized, and pins with SD less than a threshold is filtered out. Fig. [7](#page-3-0) illustrates the whole training data generation flow.

²⁷² *E. GNN-Based Timing Macro Modeling*

 1) GNN Model Training and Prediction: With the TS training data, GNN models could learn and predict accord-275 ingly. In this work, we adopt GraphSAGE [\[12\]](#page-13-11) as our main GNN engine. For each node v , (3) first aggregates the node

Fig. 6. SD and shielding effect.

Fig. 7. TS training data generation flow.

features from its neighborhood $\mathcal{N}(v)$, then [\(4\)](#page-3-4) concatenates 277 and encodes the representation of node ν with the aggregated 278 vector. In the experiments, only four rounds of aggregations ²⁷⁹ and encodings are performed, as the timing property of a node ²⁸⁰ is mostly influenced by its neighborhood. Other existing GNN ²⁸¹ models, such as GCN [\[13\]](#page-13-12) or even self-defined GNN models, 282 could also be embedded with our framework 283

$$
h_{\mathcal{N}(v)}^{k} \longleftarrow \text{AGGREGATE}_{k}\Big(h_{u}^{k-1}, \forall u \in \mathcal{N}(v)\Big) \qquad (3) \quad \text{and} \quad
$$

$$
h_{\nu}^{k} \longleftarrow \sigma \Big(W^{k} \cdot \text{CONCAT}\Big(h_{\nu}^{k-1}, h_{\mathcal{N}(\nu)}^{k}\Big)\Big).
$$
 (4) 285

We treat the GNN prediction as a classification problem and 286 convert the training labels of pins to $\{0, 1\}$. A pin's label is set 287 to 1 if its TS is not zero. In addition, for CPPR mode, labels ²⁸⁸ of multiple-fan-out pins of clock networks are also set to 1, as ²⁸⁹ previous work, e.g., [\[14\]](#page-13-13), suggests their importance for CPPR ²⁹⁰ calculation. 291

The training features are listed in Table [I.](#page-4-2) The features 292 are all basic circuit properties which could be extracted ²⁹³ within linear time. Features beginning with *"is"* are of {0, 1} ²⁹⁴ Boolean values. For integer type features like *level_from_PI*, ²⁹⁵ *level_to_PO*, and *out_degree*, the values are normalized to ²⁹⁶ [0, 1] so that each feature have the same level of influences. 297

2) Timing Macro Model Generation: Fig. [8](#page-4-3) details the ²⁹⁸ timing macro model generation stage. First, we construct the ²⁹⁹ initial timing graph and capture the interface logic netlist 300 to construct ILM. Second, we apply both serial and parallel 301 merging techniques to simplify the timing graph and retain ³⁰² only the timing variant pins identified by the GNN model. For 303 serial merging, the delay of a merged edge is the sum of the 304 original ones, while the slew inherits the last edge. For parallel ³⁰⁵

Feature	Description
level from PI	The minimum level from a PI to the pin
level to PO	The min. level from the pin to a PO
is_last_stage_fanout	If the pin is the fanout of a last stage pin
is last stage	If the pin is the last stage of the timing graph
is first stage	If the pin is the first stage of the timing graph
out_degree	The number of output edges of the pin
is_clock_network	If the pin belongs to clock network
is ff clock	If the pin is the clock pin of a flip-flop
cell type	The enumeration number of the cell type
rise in size	The fan in size of the rise pin
rise out size	The fan-out size of the rise pin
fall in size	The fan-in size of the fall pin
fall out size	The fan out size of the fall pin
is CPPR	If the pin is crucial for CPPR

TABLE I TRAINING FEATURES

Fig. 8. Timing macro model generation.

 merging, delay or slew is the minimum (*resp.* maximum) of the original edge values in the early (*resp.* late) mode. Afterward, we apply the lookup table index selection method proposed in [\[3\]](#page-13-3), where indices that minimize the interpolation timing error are selected. Lastly, the timing macro model is generated.

311 III. MULTI-CORNER TIMING MACRO MODELING

³¹² *A. Corner Explosion and Challenges*

313 With the continuous advances in the semiconductor industry, design verification now involves examinations under numer-315 ous PVT corners [\[8\]](#page-13-7). This rigorous verification process is essential to ensure the robustness of a design under possible 317 operating conditions. Several approaches have been proposed to address the challenges associated with multi-corner timing analysis [\[15\]](#page-13-14), [\[16\]](#page-13-15), [\[17\]](#page-13-16), [\[18\]](#page-13-17), [\[19\]](#page-13-18). Nevertheless, none of the previous work has focused on multi-corner timing macro modeling. The groups of timing variant pins may vary a lot across different corners. Consequently, adapting the single- corner timing macro modeling frameworks mentioned in Section [II](#page-1-0) to multi-corner settings presents significant engi-325 neering effort or leads to substantial performance degradation. For example, iTimerM $\begin{bmatrix} 3 \end{bmatrix}$ and ATM $\begin{bmatrix} 5 \end{bmatrix}$ need to fine-tune distinct thresholds for each corner. Similarly, although our single-corner timing macro modeling framework is applicable across different corners, users are still required to extract training data and train an exclusive GNN model for each 331 corner. It becomes even more challenging when dealing with chiplets that deviate from typical corners. To the best of our knowledge, existing approaches lack feasibility in identifying timing variant pins without the presence of a characterized ³³⁴ corner library. 335

B. Problem Formulation 336

We extend the problem formulation of single-corner timing 337 macro modeling defined in Section [II-A](#page-1-1) to encompass multi- 338 corner settings. The only differences are the input cell libraries 339 are now associated with a set of timing corners, and the ³⁴⁰ framework should generate a dedicated timing macro model ³⁴¹ for each corner within the corner set or for each unseen corner. ³⁴²

IV. OUR MULTI-CORNER TIMING MACRO MODELING 343 FRAMEWORK ³⁴⁴

A. Problem Modeling 345

The primary challenge of the multi-corner timing macro ³⁴⁶ modeling problem lies in the precise identification of timing ³⁴⁷ variant pins for each corner. This allows us to build a compact ³⁴⁸ timing macro model for each corner while preserving high- ³⁴⁹ timing accuracy. To effectively tackle the issue of identifying 350 timing variant pins, we have discovered that it can be ³⁵¹ approached from the perspective of recommendation systems 352 because the relationship between pins and corners resembles 353 the user-item relationship in recommendation systems. In the ³⁵⁴ context of recommendation systems, the goal is to capture 355 user-item interactions and provide personalized suggestions. ³⁵⁶ Likewise, in the multi-corner timing macro modeling problem, 357 our objective is to understand the interactions between pin ³⁵⁸ features and corner properties and determine whether a pin ³⁵⁹ is timing variant under a specific corner. By reframing the ³⁶⁰ problem in this manner, we can leverage the well-established ³⁶¹ techniques from the field of recommendation systems to ³⁶² improve the identification of timing variant pins.

A common approach to interpret user-item interactions is to ³⁶⁴ construct a user-item matrix, where each element represents ³⁶⁵ the relationship between the corresponding user and item $[20]$. 366 Then, it becomes a matrix completion problem that aims to 367 determine the missing entries based on known user-item inter- ³⁶⁸ actions. Similarly, we can formulate pin-corner relationships as 369 a matrix completion problem. Based on this formulation, our ³⁷⁰ framework has the potential to infer the variability of pins in ³⁷¹ new designs or assess the degrees of variability under unseen 372 corners. 373

With this understanding, we can formally define the timing 374 variant pin identification problem in the context of matrix 375 completion, where each circuit pin serves as a user, and each 376 corner is considered an item. The pin-corner matrix $Y \in \mathbb{R}^{M \times N}$ 377 for *M* pins and *N* corners is defined as 378

$$
y_{A_i C_k} = \begin{cases} 1, & \text{if pin } A_i \text{ is timing variant under corner } C_k \\ 0, & \text{otherwise.} \end{cases}
$$

 (5) 380

Fig. [9](#page-5-0) illustrates the modeling of the pin-corner matrix. The ³⁸¹ goal of the matrix completion process is to determine whether 382 each element $y_{A_iC_k}$ is 0 (pin A_i is not timing variant under 383 corner C_k) or 1 (A_i is timing variant under C_k).

		Corner Features									
			Corner 1 Corner 2 Corner 3			Corner _N					
	Pin 1	0/1	0/1	0/1							
	Pin 2	0/1	0/1	0/1		0/1					
	Pin 3	0/1	0/1	0/1		0/1					
Pin Features											
	Pin M	0/1	0 / 1	0/1							

Fig. 9. Visualization of a pin-corner matrix.

Fig. 10. Structure of the NCF network and data augmentation with *mixup*.

³⁸⁵ *B. Collaborative Filtering*

 To address the pin-corner matrix completion problem, we employ the concept of *collaborative filtering*, which identifies shared interests among users, such as the tendency of users, that purchase item A also purchase item B, and leverages this information to provide similar recommendations to users with similar preferences. This attribute is beneficial in the problem of multi-corner timing variant pin identification, as pins with similar properties often exhibit comparable levels of timing variability under the same corner.

³⁹⁵ By employing collaborative filtering, we can express the 396 interaction between the pin A_i and the corner C_k as a function $_{397}$ of the pin embedding p_{A_i} and the corner embedding q_{C_k}

$$
\hat{y}_{A_i C_k} = f(A_i, C_k | p_{A_i}, q_{C_k})
$$
\n(6)

³⁹⁹ where *f* can represent any relationship between pin *Ai* and cor n_{00} ner C_k . The pin embedding p_{A_i} and the corner embedding q_{C_k} 401 can be extracted feature vectors as described in Section [IV-C.](#page-5-1) ⁴⁰² The interaction function *f* can be optimized by employing ⁴⁰³ target functions that minimize the discrepancy between $\hat{y}_{A_iC_k}$ 404 and $y_{A_iC_k}$, where $y_{A_iC_k}$ refers to the corresponding element in ⁴⁰⁵ the pin-corner matrix as described in [\(5\).](#page-4-4)

⁴⁰⁶ *C. Neural Collaborative Filtering (NCF) and Training* ⁴⁰⁷ *Features*

 Since the identification of timing variant pins involves many factors (e.g., topological complexity, operating condition), it is crucial to find an interaction function *f* that can capture nonlinear relationships between pin features and their timing variability under different corners. Thus, we employ the *NCF* model [\[20\]](#page-13-19), which consists of fully connected neural

TABLE II CORNER FEATURES FOR TRAINING

Feature	Description
process	The process of the corner (fast: 0.9 , typical: 0.6 , slow: 0.3)
voltage	The operating voltage of the corner
temperature	The operating temperature of the corner
inv cell rise	The flattened cell-rise lookup table of the inverter
inv_rise_transition	The flattened rise-transition lookup table of the inverter
inv cell fall	The flattened cell-fall lookup table of the inverter
inv fall transition	The flattened fall transition lookup table of the inverter

network layers, as shown in Fig. [10.](#page-5-2) In contrast to simple ⁴¹⁴ interaction functions, such as the inner product, the NCF ⁴¹⁵ model demonstrates the potential to capture complex and ⁴¹⁶ nonlinear relationships between pins and corners.

In our NCF model, each input vector consists of the pin ⁴¹⁸ feature vector p_{A_i} and the corner feature vector q_{C_k} . For α_{19} pin features, we adopt the same circuit topology features ⁴²⁰ as our single-corner timing macro modeling framework, as ⁴²¹ described in Table [I](#page-4-2) and Section [II-E1.](#page-3-5) On the other hand, 422 as shown in Table [II,](#page-5-3) corner features include the temperature, 423 voltage, and process of the corner. Furthermore, given that an ⁴²⁴ inverter consists of a pMOS and an nMOS, it can effectively ⁴²⁵ represent the switching characteristics of the corresponding ⁴²⁶ corner library. Thus, we also incorporate the elements in the ⁴²⁷ timing lookup tables of the inverter cell as our corner features. ⁴²⁸ Lookup tables of other primitive cells (e.g., NAND, AND, 429 etc.) might also be included to further enhance the model's ⁴³⁰ learning quality.

After the extraction and concatenation of pin features p_{A_i} $_{432}$ and corner features q_{C_k} , the corresponding timing variability $\frac{433}{4}$ $\hat{y}_{A_iC_k}$ can be inferred as follows: $\phi_A(t)$

$$
\hat{y}_{A_iC_k} = f_{\Phi}([p_{A_i}, q_{C_k}])
$$
\n(7) 435

where $[\cdot, \cdot]$ is the concatenation operator, and f_{Φ} is the 436 interaction function with a set of parameters Φ .

In our NCF model, we use two layers of fully connected ⁴³⁸ neural network. Thus, the interaction function f_{Φ} can be further 439 expressed as 440

$$
f_{\Phi}([p_{A_i}, q_{C_k}]) = \sigma(f_{\Phi_2}(\tanh(f_{\Phi_1}([p_{A_i}, q_{C_k}))))
$$
 (8) 441

where $\Phi = {\Phi_1, \Phi_2}$, Φ_1 , and Φ_2 correspond to the parame- 442 ters of the first and the second NCF layer, respectively, $tanh(\cdot)$ 443 denotes the hyperbolic tangent function which serves as the ⁴⁴⁴ activation function, and $\sigma(\cdot)$ is the sigmoid function which 445 maps the predicted values to the range of $[0, 1]$.

Since the target $y_{A_iC_k}$ of each training data $[p_{A_i}, q_{C_k}]$ is of a 447 binary value, we adopt the binary classification loss function ⁴⁴⁸ to optimize the model 449

$$
\mathcal{L} = -\sum_{(A_i, C_k) \in \mathbb{X}} y_{A_i C_k} \log \hat{y}_{A_i C_k} + (1 - y_{A_i C_k}) \log (1 - \hat{y}_{A_i C_k}) \tag{9}
$$

where X denotes the training label set which will be discussed 452 in Section [IV-D.](#page-6-0) We use the Adam optimizer $[21]$ to minimize 453 the loss defined by (9) . Other design choices (e.g., increasing 454 the number of neural network layers, using different activation 455 functions, etc.) might be adopted to further improve the 456 performance.

Fig. 11. (a) Training label generation flow. (b) Flow of NCF model training, prediction, and timing macro model generation on testing data.

Fig. 12. (a) Intra-design/corner set matrix completion. (b) Inter-design/corner set matrix completion. Initially, timing variability in the purple region is known, while the goal is to infer the timing variability of the white region.

⁴⁵⁸ *D. Training Label Generation*

 To enhance the capability of timing variant pin identification of our NCF model, high-quality training labels are essential. Drawing from the achievements of our single-corner timing macro modeling framework, we leverage two key processes, *insensitive pins filtering* and *TS evaluation*, to generate our training labels. The details of these processes are presented in Fig. [7](#page-3-0) and Section [II-D.](#page-2-3) By extending the concepts of (1) and (2) , we can define the TS in the context of multi-corner timing macro modeling

$$
\text{TS}_{A_iC_k} = \text{AVG}_{b \in \mathbb{B}} \left(\frac{\Delta slew_{A_iC_k}^b + \Delta at_{A_iC_k}^b + \Delta rat_{A_iC_k}^b + \Delta slack_{A_iC_k}}{4} \right)
$$
\n
$$
\tag{10}
$$

$$
^{469}
$$

$$
470 \quad \Delta slew_{A_iC_k}^b = \frac{1}{|PI \cup PO|} \Sigma_{P \in PI \cup PO} \frac{slew_{PC_k,\text{after}}^b - slew_{PC_k,\text{before}}^b}{slew_{PC_k,\text{before}}^b} \tag{11}
$$

⁴⁷¹ where $TS_{A_iC_k}$ denotes the TS of pin A_i under timing corner C_k , \mathbb{B} denotes the set of boundary timing constraints, $slew_{PCk}^b$, before ⁴⁷³ and *slew*^b_{*PC_k*, after denote the slew value at boundary pin *P* under} 474 corner C_k before and after the removal of A_i , respectively, ⁴⁷⁵ and $\Delta a t_{A_iC_k}^b$, $\Delta r a t_{A_iC_k}^b$, and $\Delta slack_{A_iC_k}^b$ can be obtained similar 476 to (11) . After the TS evaluation, we have to convert the TS ⁴⁷⁷ values into binary to fill in the pin-corner matrix. In our work, 478 a pin A_i is deemed timing variant under a corner C_k if and only if the corresponding TS is larger than a threshold t_v . That is 479

$$
y_{A_iC_k} = \begin{cases} 1, & \text{if } \text{TS}_{A_iC_k} > t_v \\ 0, & \text{otherwise} \end{cases} \tag{12}
$$

where t_v is set as 0.0001 in our experiments. 481

However, the computational cost of the TS evaluation flow 482 increases linearly with the number of corners, making it ⁴⁸³ excessively time-consuming to evaluate TS for all pins across ⁴⁸⁴ all corners, particularly in large-scale training designs. To ⁴⁸⁵ expedite the generation of training labels, we also incorporate 486 NCF model and matrix completion into our training label 487 generation flow, as depicted in Fig. $11(a)$ $11(a)$. Our approach begins 488 by performing insensitive pins filtering on each corner and ⁴⁸⁹ design, which involves a one-time timing propagation and ⁴⁹⁰ therefore does not consume significant time. Subsequently, ⁴⁹¹ only the pins that have not been filtered out in at least one of ⁴⁹² the corners are considered for the TS evaluation step. For each ⁴⁹³ large training design, we randomly select a subset of corners ⁴⁹⁴ and generate TS values for the remaining pins under those ⁴⁹⁵ corners, while TS values of small training design are generated ⁴⁹⁶ across all corners. Then, we convert TS values to timing ⁴⁹⁷ variability and build the pin-corner matrix. By employing ⁴⁹⁸ NCF model training and prediction, we can infer the timing 499 variability for the unselected corners. Fig. $12(a)$ $12(a)$ visualizes the 500 matrix completion process. Timing variability for all pins from 501 small training designs is already known, whereas for pins in 502 large training designs, timing variability is only evaluated for 503 a subset of corners. The goal is to infer the timing variability ⁵⁰⁴ within the white part. Given that the known timing variability 505 spans across all designs and corners, we refer to this approach 506 as *intra-design/corner set matrix completion*. 507

E. Training Techniques—Data Augmentation With mixup 508

Now, intuitively, we can utilize the training features from Tables [I](#page-4-2) and [II](#page-5-3) and the training labels generated from Section [IV-D](#page-6-0) to start the training of our NCF model. However, $\frac{1}{2}$ due to the nature of timing graphs, few pins are actually

 influential in the overall timing accuracy. Consequently, there $_{514}$ exists a scarcity of positive elements (i.e., $y_{A_iC_k} = 1$) in the pin-corner matrix (less than 10% in most designs). The overwhelmingly large portion of timing invariant data makes it hard for the model to distinguish critical but rare timing variant pins from hundreds of thousands of pins in a large circuit design. To mitigate the label imbalance issue, we utilize *mixup* [\[22\]](#page-13-21), a simple yet effective data-augmentation approach that generates pseudo-training data by interpolation.

⁵²² We first group all pin-corner pairs with training label 1 as the positive set \mathbb{X}^+ : $\{(A_i, C_k)| (A_i, C_k) \in \mathbb{X}$ and $524 \text{ } y_{A_i} = 1$ } and those with training label 0 as the negative set $\mathbb{X}^- : \{(A_j, C_l) | (A_j, C_l) \in \mathbb{X} \text{ and } y_{A_i C_l} = 0\}.$ In each training ϵ_{226} iteration, for each pin-corner pair (A_i, C_k) in \mathbb{X}^+ , we sample \sum ₅₂₇ one pin-corner pair (*A_i*, *C_l*) from the negative set \mathbb{X}^- . Then, ⁵²⁸ the corresponding pin and corner features form a feature tuple $(p_{A_i}, q_{C_k}, p_{A_i}, q_{C_l})$. After that, we interpolate each data pair ⁵³⁰ with a coefficient λ sampled from the Beta distribution to ⁵³¹ generate the augmented data

$$
\tilde{p}_{A_{ij}} = \lambda p_{A_i} + (1 - \lambda) p_{A_j}
$$

$$
\tilde{q}_{C_{kl}} = \lambda q_{C_k} + (1 - \lambda) q_{C_l}
$$

$$
534 \qquad \qquad \widetilde{y}
$$

$$
\tilde{y}_{A_{ij}C_{kl}} = \begin{cases} 1, & \text{if } \lambda y_{A_iC_k} + (1 - \lambda)y_{A_jC_l} > 0.5 \\ 0, & \text{otherwise.} \end{cases}
$$

 $\tilde{\rho}_{A_{ij}}$, $\tilde{q}_{C_{kl}}$, $\tilde{y}_{A_{ij}C_{kl}}$), we can ⁵³⁶ optimize the NCF model by rewriting the loss function [\(9\)](#page-5-4) as ⁵³⁷ follows:

538
$$
\mathcal{L} = - \sum_{(A_i, C_k) \in \mathbb{X}^+} \left[\tilde{y}_{A_{ij}C_{kl}} \log \hat{y}_{A_{ij}C_{kl}} \right. \\ \left. + \left(1 - \tilde{y}_{A_{ij}C_{kl}} \right) \log \left(1 - \hat{y}_{A_{ij}C_{kl}} \right) \right]
$$

⁵⁴⁰ where

 $\hat{y}_{A_{ij}C_{kl}} = f_{\Phi}([\tilde{p}_{A_{ij}}, \tilde{q}_{C_{kl}}]).$

542 As shown in Fig. [10,](#page-5-2) by interpolating the pin and corner features with opposite timing variability, the model is forced to learn more comprehensive and distinguishable features for timing variant pins and thus make more precise inferences on new layouts or unseen corners.

⁵⁴⁷ *F. Testing Data Prediction*

 After completing the training label generation and data augmentation, we perform NCF model training and prediction to identify timing variant pins in the testing designs, as shown in Fig. [11\(](#page-6-2)b). Unlike the intra-design/corner set matrix 552 completion discussed in Section [IV-D,](#page-6-0) where the timing variability of pins from all designs is known, in this case, the matrix completion process needs to infer timing variability for pins from completely unseen testing designs. Furthermore, we assume that there may exist unseen corners in the testing data. Therefore, we refer to this approach as *inter-design/corner set matrix completion*. Fig. [12\(](#page-6-3)b) visualizes this matrix comple-tion process.

⁵⁶⁰ Once we have identified the timing variant pins, we proceed ⁵⁶¹ to generate timing macro models for each testing design under ⁵⁶² each corner, employing a process similar to single-corner

TABLE III

TRAINING DESIGN STATISTICS. IN EXPERIMENTS REGARDING THE ACCELERATION OF TRAINING LABEL GENERATION IN SECTION [V-C4,](#page-12-1) THE LEFT 13 DESIGNS SERVE AS "SMALL" TRAINING DESIGNS WHILE THE RIGHT SIX DESIGNS ARE "LARGE" TRAINING DESIGNS

Design	#Pins	#Cells	#Nets	Design	#Pins	$\#Cells$	#Nets
s1196 eval	2181	823	791	usb funct	48243	15992	15911
$s1494$ eval	2584	976	951	systemcaes	21971	6873	6790
$s27$ eval	94	40	36	wb dma	13125	4627	4419
s344 eval	638	251	225	tv80	17038	5331	5317
s349 eval	651	261	235	ac97 ctrl	42438	14473	14435
s386 eval	641	245	232	pci bridge32	59879	19426	19274
$s400$ eval	760	287	260				
$s510$ eval	980	382	369				
s526 eval	1002	381	354				
cre32d16N	1283	527	495				
usb_phy_ispd	2545	957	938				
systemcdes	10282	3638	3596				
aes core	66751	23327	23199				

TABLE IV TESTING DESIGNS STATISTICS

timing macro modeling, as depicted in Fig. 8 . The distinction 563 lies in the pin preservation step, which is now determined 564 based on the pin-corner matrix. 565

V. EXPERIMENTAL RESULTS 566

A. Experimental Settings 567

In our framework, the training and prediction of both NCF $_{568}$ models and GNN models are implemented in the Python3 569 programming language, while the insensitive pins filtering, ⁵⁷⁰ TS evaluation, and timing macro model generation are imple- ⁵⁷¹ mented in the $C++$ programming language. The experiments 572 are conducted on a Linux workstation with a 3.7-GHz CPU, ⁵⁷³ 192 GB RAM, and an NVIDIA RTX 3090 GPU. 574

For the experiments regarding single-corner timing macro 575 modeling, we adopt the benchmark suite provided by the ⁵⁷⁶ TAU 2016 $[9]$ and TAU 2017 $[10]$ contests as listed in 577 Tables [III](#page-7-1) and [IV.](#page-7-2) For the experiments regarding multi-corner 578 timing macro modeling, we also adopt the circuit designs 579 from these two contests. As for the multi-corner library, we 580 adopt the Synopsys SAED 32/28nm Digital Standard Cell ⁵⁸¹ Library $[23]$, as the TAU libraries do not support multi- 582 corner functionality. We use 27 base characterization corners 583 in our experiments, as listed in Table [V.](#page-8-0) The first and second ⁵⁸⁴ characters in a corner's name denote its nMOS and pMOS ⁵⁸⁵ processes, respectively, (f, t, and s represent fast, typical, ⁵⁸⁶ and slow, respectively). The central segment of a corner's 587 name signifies the voltage, while the final segment denotes 588 the temperature. For instance, "tt1p05vn40c" corresponds to 589 typical nMOS and pMOS processes, 1.05 V, and −40◦C. In ⁵⁹⁰ each corner library, a total of 314 cells are characterized. We 591

TABLE V CORNER LIST

ff0p85v125c	ff0p85v25c	ff0p85vn40c	ff0p95v125c	ff0p95v25c
ff0p95vn40c	ff1p16v125c	ff1p16v25c	ff1p16vn40c	ss0p7v125c
ss0p7v25c	ss0p7vn40c	ss0p75v125c	ss0p75v25c	ss0p75vn40c
ss0p95v125c	ss0p95v25c	ss0p95vn40c	t10p78v125c	$t\text{t}0p78v25c$
$t\text{t}0p78\text{vn}40c$	$t\text{t}0\text{p}85\text{v}125\text{c}$	$t\text{t}0\text{p}85\text{v}25\text{c}$	tt0p85vn40c	t1p05v125c
t1p05v25c	t1p05vn40c			

⁵⁹² have aligned the cell names in TAU 2016 and TAU 2017 circuit ⁵⁹³ netlists with those in the SAED libraries.

 In our experiments, we assess timing accuracy by comparing the timing analysis results of the timing macro model with the $_{596}$ flat circuit design. We adopt iTimerC 2.0 [\[14\]](#page-13-13) as the reference timer. On the other hand, the evaluation of macro model size is based on the size of the early library associated with the timing macro model.

⁶⁰⁰ *B. Results on Single-Corner Timing Macro Modeling*

 First, we evaluate our single-corner timing macro modeling framework and compare the results with state-of-the-art works. Note that in our experiments, we utilize only the first eight basic features in Table [I,](#page-4-2) along with the *is*_*CPPR* feature. This selection is made to enhance the overall performance.

 Table [VI](#page-9-0) shows the results on TAU 2016 [\[9\]](#page-13-8) and TAU 607 2017 [\[10\]](#page-13-9) benchmarks considering CPPR and the compar-608 isons with two state-of-the-art ILM-based works iTimerM [\[3\]](#page-13-3) and [\[4\]](#page-13-4). Among all the criteria, max error and model file size are viewed as the most crucial ones. Our framework achieves extremely high-timing accuracy as all the max errors are less than 0.1 ps, which is same as iTimerM [\[3\]](#page-13-3) and 9 times better than [\[4\]](#page-13-4). As for model file size, our result is about 10% smaller than iTimerM [\[3\]](#page-13-3) and 45% smaller than [\[4\]](#page-13-4). To summarize, our framework preserves the highest-timing accuracy in terms of max errors among the state-of-the-art works, while further improving the model size by 10% than the same-accuracy- level work. Our framework also achieves similar or even better results in terms of model generation performance and model usage performance. The average errors of our framework are slightly higher than those of iTimerM [\[3\]](#page-13-3); however, the difference is only a few femtoseconds and thus can be neglected.

⁶²⁴ In Table [VII,](#page-9-1) we demonstrate how domain knowledge can enhance GNN model training across various timing models or modes, using CPPR as a case study. As mentioned in 627 Section [II-E,](#page-3-6) multiple-fan-out pins of clock networks are crucial for CPPR calculation. Thus, we could add a dedicated training feature for CPPR to indicate this kind of pins, 630 called *is CPPR*. We adopt the results of iTimerM [\[3\]](#page-13-3) as the baseline and calculate the differences and ratios as described in Table [VI.](#page-9-0) Before adding *is*_*CPPR*, our framework could 633 already achieve the same timing accuracy as iTimerM [\[3\]](#page-13-3) while reducing the model size by 6%. After the *is*_*CPPR* feature is included, our framework still preserves the same timing accuracy while improving the model size by 10%. The result tells that our framework could achieve superior quality with only the basic features, while the dedicated features could capture the timing properties of designs more precisely.

Fig. 13. Separated TS distribution of *systemcaes* based on the insensitive pins filtering.

Table [VIII](#page-10-0) displays the results on the TAU 2017 [\[10\]](#page-13-9) 640 benchmark without CPPR. Our results are compared with ⁶⁴¹ the ILM-based work iTimerM $[3]$ and the ETM-based work 642 ATM $[5]$. In comparison with ATM $[5]$, our framework 643 achieves 9 times better-max error and 25 times better-average ⁶⁴⁴ error, but it suffers from a larger model size. It is as our 645 expectation since our framework is ILM-based while ATM [\[5\]](#page-13-5) 646 is ETM-based. Besides, we also achieve 17 times faster model $_{647}$ generation runtime than ATM $[5]$. As for the ILM-based work $\frac{648}{ }$ iTimerM $[3]$, we preserve the same timing accuracy while ϵ_{49} improving the model size by 9%. The result demonstrates 650 the applicability and generality of our framework on different 651 timing modes (CPPR on and CPPR off), and it may be further 652 inferred to various timing delay models and modes. 653

As mentioned in Section [II-D,](#page-2-3) the goal of the insensitive 654 pins filtering is to exclude noncritical pins rapidly, under the ⁶⁵⁵ premise that the timing accuracy is not degraded. Fig. [13](#page-8-1) 656 shows the timing sensitivities of pins in the training design 657 *systemcaes*. TS of pins that are filtered out are shown in the 658 left histogram, and those of the potential sensitive pins are 659 shown in the right histogram. It can be seen that a majority 660 of filtered pins indeed have zero TS, while many remained 661 pins have nonzero TS. It confirms the consistency between the 662 insensitive pins filtering and the TS evaluation, which implies $\frac{663}{2}$ the insensitive pins filtering is suitable for accelerating the ⁶⁶⁴ training data generation flow. To further ensure the timing ⁶⁶⁵ accuracy is not degraded by the insensitive pins filtering, we ϵ_{666} conduct an experiment in which the training labels of all the 667 remained pins after the insensitive pins filtering are set to 1. ⁶⁶⁸ The result is shown in Table [IX.](#page-10-1) The results of iTimerM $[3]$ 669 are adopted as the baseline, and the differences and ratios are ⁶⁷⁰ calculated as described in Table [VI.](#page-9-0) The results achieve the 671 same timing accuracy as iTimerM $\left[3\right]$ which is of the best 672 accuracy among the previous works. Therefore, it is supported σ that the insensitive pins filtering does not degrade the resulting 674 timing accuracy. 675

Finally, when we encounter new benchmarks under the same 676 NLDM libraries, we only need to consider the GNN model 677 inference runtime and the model generation runtime since our 678 framework is available on general designs under the NLDM. ⁶⁷⁹ The GNN model inference time is usually much less than 680 the model generation time listed in the above tables. Thus, 681 our framework spends comparable or even shorter runtime 682 than previous work for unseen test data under the NLDM. As 683 for other timing delay models, such as AOCV, POCV, and ⁶⁸⁴ CCS, we need to further consider the training data generation \cos time and the GNN model training time. However, since our 686

TABLE VI

SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2016 [\[9\]](#page-13-8) AND TAU 2017 [\[10\]](#page-13-9) BENCHMARKS WITH CPPR. FOR THE MODEL FILE SIZE, WE ADOPT THE SIZE OF THE LIBRARY FOR LATE TIMING. DIFFERENCE 1 AND RATIO 1 ARE COMPARED WITH ITIMERM [\[3\]](#page-13-3). DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH [\[4\]](#page-13-4). DIFFERENCE = COMPARED RESULT − OUR RESULT. RATIO = COMPAREDF RESULT/OUR RESULT. NOTE THAT [\[4\]](#page-13-4) IS ONLY EVALUATED ON TAU 2016 BENCHMARK IN THEIR WORK

		Avg.	Max		Model	Generation	Generation	Usage	Usage
Design		Error	Error		File Size	Runtime	Memory	Runtime	Memory
		(ps)	(ps)		(MB)	(s)	(MB)	(s)	(MB)
	Qurs	0.0000	0.007	$_{Ours}$	56	11	1087	8	475
mgc_edit_dist_iccad_eval	iTimerM	0.0000	0.007	<i>iTimerM</i>	64	$\overline{10}$	1043	$\overline{8}$	550
	$\lceil 4 \rceil$	NA.	0.158	$\overline{[4]}$	79	$\overline{15}$	5	4	5
	Ours	0.0006	0.040	Ours	$\overline{45}$	$\overline{12}$	1204	6	383
vga lcd iccad eval	<i>i</i> TimerM	0.0006	0.040	iTimerM	$\overline{50}$	$\overline{13}$	1208	7	402
	[4]	NA.	0.255	$\overline{[4]}$	$\overline{72}$	$\overline{24}$	399	$\overline{4}$	$\overline{5}$
	Ours	0.0004	0.052	$_{\rm Ours}$	35	50	4908	5	324
leon3mp_iccad_eval	iTimerM	0.0004	0.052	iTimerM	45	58	4807	6	395
	$\overline{[4]}$	NA.	0.220	$\overline{[4]}$	86	78	$\overline{\mathcal{F}}$	$\overline{5}$	$\overline{5}$
	Ours	0.0000	0.004	Ours	$\overline{213}$	89	6609	29	1757
netcard iccad eval	<i>i</i> TimerM	0.0000	0.004	<i>i</i> TimerM	220	65	6513	29	1822
	$\overline{[4]}$	NA.	0.203	[4]	372	101	12616	$\overline{23}$	4332
	$_{\text{Ours}}$	0.0002	0.016	Ours	369	89	8298	64	3034
leon2 iccad eval	<i>i</i> TimerM	0.0002	0.016	<i>iTimerM</i>	372	82	7865	61	3056
	$\lceil 4 \rceil$	NA.	0.241	$\lceil 4 \rceil$	676	105	15299	38	5315
TAU 2016 Average	Difference 1	0.0000	0.000	Ratio 1	1.116	0.961	0.975	1.099	1.094
	Difference 2	N.A.	0.192	Ratio 2	1.809	1.448	0.818	0.738	0.851
mgc edit dist iccad	Ours	0.0029	0.052	Ours	60	16	1054	8	514
	<i>i</i> TimerM	0.0003	0.052	iTimerM	66	$\overline{12}$	1063	$\overline{9}$	537
	$_{\text{Ours}}$	0.0024	0.080	$_{\text{Ours}}$	56	16	1455	7	474
vga_lcd_iccad	iTimerM	0.0023	0.080	<i>i</i> TimerM	58	15	1429	$\overline{8}$	487
	Ours	0.0031	0.046	Ours	37	$\overline{68}$	5407	5	332
leon3mp_iccad	iTimerM	0.0016	0.046	iTimerM	46	67	5281	6	406
	Ours	0.0013	0.029	$_{\text{Ours}}$	239	101	7814	35	1938
netcard iccad	<i>iTimerM</i>	0.0003	0.029	iTimerM	248	98	7545	33	1993
	Ours	0.0027	0.095	Ours	438	125	8171	62	3613
leon ₂ iccad	<i>i</i> TimerM	0.0013	0.095	iTimerM	440	109	8049	64	3625
TAU 2017 Average	Difference	-0.0013	0.000	Ratio	1.084	0.903	0.984	1.070	1.065

TABLE VII SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS WITH AND WITHOUT CPPR-DEDICATED FEATURES

 framework could be directly applied to perform timing macro modeling no matter which timing model is chosen, users do not need to spend a great deal of time designing specific algorithms for different timing delay models and tuning a bunch of parameters. As a consequence, our framework still shows high applicability and efficiency on the timing macro modeling problem.

⁶⁹⁴ *C. Results on Multi-Corner Timing Macro Modeling*

 1) Effectiveness of Our Multi-Corner Framework: In this section, we compare our multi-corner timing macro modeling framework with the multi-corner extensions of state-of-the- art single-corner timing macro modeling frameworks. The results of iTimerM [\[3\]](#page-13-3) are obtained by directly conducting the iTimerM algorithm flow on each specific corner. For the experiments of our single-corner timing macro modeling framework (hereafter referred to as "[\[6\]](#page-13-6)" to avoid ambiguity in this section), training data for each corner is generated first, and subsequently distinct GNN models are trained for each individual corner.

⁷⁰⁶ To ensure fair comparisons, for experiments in ⁷⁰⁷ Sections [V-C1](#page-9-2) and [V-C2,](#page-11-0) all the training designs from Table [III](#page-7-1) are categorized as "small" during the training label 708 generation process (as shown in Fig. [11\)](#page-6-2); that is, the timing 709 variability of all the pins is evaluated under all the corners. 710 Note that LibAbs $[2]$, $[4]$ and ATM $[5]$ do not support the 711 multi-corner SAED library, and thus they are not included in 712 the comparison in this section. $\frac{713}{20}$

Table X presents the experimental results on TAU 2016 and $_{714}$ TAU 2017 benchmarks listed in Table [IV](#page-7-2) over the 27 corners. ⁷¹⁵ Here, the "average" max error (*resp.* model size) represents 716 the mean values of the maximum timing errors (*resp.* timing 717 macro model size) across the 27 corners, while the "max" max error (*resp.* model size) indicates the highest values of the 719 maximum timing errors (*resp.* timing macro model size) across 720 the 27 corners. Note that the results in Table X are without 721 CPPR because the SAED library does not provide separate ⁷²² early and late cell libraries. Nevertheless, incorporating CPPR 723 into our framework would pose no significant challenge, as 724 we can easily integrate the *is_CPPR* feature in our pin feature 725 vector. 726

Compared to the state-of-the-art algorithmic work 727 iTimerM $[3]$, our framework demonstrates a 16% improvement 728 in model size while maintaining the same level of timing ⁷²⁹ accuracy, with an average max error difference of less than ⁷³⁰

SINGLE-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2017 BENCHMARK WITHOUT CPPR. DIFFERENCE 1 AND RATIO 1 ARE COMPARED WITH ITIMERM [\[3\]](#page-13-3). DIFFERENCE 2 AND RATIO 2 ARE COMPARED WITH ATM [\[5\]](#page-13-5). DIFFERENCE = COMPARED RESULT − OUR RESULT. RATIO = COMPARED RESULT/OUR RESULT. WE ADDITIONALLY INCLUDE THE CIRCUIT *mgc_matrix_mult_iccad* TO EVALUATE SINCE ATM [\[5\]](#page-13-5) ALSO ADOPTS IT AS ONE TEST CASE

Design		Avg. Error	Max Error		Model File Size (MB)	Generation Runtime (s)	Generation Memory (MB)	Usage Runtime (s)	Usage Memory (MB)
		(ps)	(p _S)						
	Ours	0.0033	0.052	Ours	59	14	1069	\overline{Q}	563
mgc_edit_dist_iccad	<i>i</i> TimerM	0.0007	0.052	<i>i</i> TimerM	65	13	1062	9	523
	ATM	0.0960	0.402	ATM	$\overline{2}$	833	N.A.	0.36	N.A.
	Ours	0.0026	0.080	Ours	52	18	1457	7	442
vga_lcd_iccad	iTimerM	0.0023	0.080	iTimerM	55	$\overline{17}$	1420	9	450
	ATM	0.0400	0.160	ATM	0.3	85	N.A.	0.06	N.A.
	Ours	0.0033	0.046	Ours	31	78	5392	5	275
leon3mp_iccad	iTimerM	0.0018	0.046	<i>iTimerM</i>	$\overline{31}$	102	5257	$\overline{4}$	286
	ATM	0.1070	0.460	ATM	0.6	740	N.A.	0.09	N.A.
	Ours	0.0033	0.029	Ours	226	124	7804	32	1795
netcard iccad	iTimerM	0.0005	0.029	iTimerM	229	104	7539	33	1838
	ATM	0.0540	0.246	ATM	1.6	618	N.A.	0.27	N.A.
	Ours	0.0027	0.095	Ours	408	193	8156	60	3378
leon ₂ iccad	iTimerM	0.0013	0.095	iTimerM	410	152	7782	59	3390
	ATM	0.0400	0.240	ATM	2.4	1055	N.A.	0.34	N.A.
	Ours	0.0032	0.054	Ours	124	27	1106	18	924
mgc_matrix_mult_iccad	<i>i</i> TimerM	0.0020	0.054	<i>iTimerM</i>	171	29	1114	24	1098
	ATM	0.1300	0.450	ATM	$\overline{12}$	629	N.A.	1.63	N.A.
	Difference 1	-0.0016	0.000	Ratio 1	1.093	0.980	0.978	1.085	1.033
Average	Difference 2	0.0748	0.267	Ratio 2	0.028	17.910	N.A.	0.029	N.A.

TABLE IX VALIDATION ON INSENSITIVE PINS FILTERING

 0.2 ps. Moreover, considering the maximum of max error and model size, our framework reduces the timing macro model size by over 20% while maintaining a timing error difference of less than 0.1 ps. Compared to the learning- based approach [\[6\]](#page-13-6), our framework exhibits a similar trend, showcasing a 10% improvement in average model size while keeping the timing error difference below 0.2 ps. Similarly, the results are even better when considering the maximum of max error and model size. The experimental results validate the precise identification of timing variant pins in each corner by our framework, leading to highly compact timing macro models. Furthermore, the superior performance observed in terms of the maximum of max error and model size suggests that our framework effectively captures the relationship between each pin and each specific corner, ensuring stable performance across all corners.

 In addition to timing accuracy and timing macro model size, our framework also exhibits outstanding performance in terms of runtime. As shown in Table $XI(a)$ $XI(a)$, our frame- work achieves approximately a 16X faster model training time compared to [\[6\]](#page-13-6). The main reason is that the GNN models used in our single-corner framework $\boxed{6}$ are specific to each corner. Consequently, experiments of $[6]$ necessitated training 27 separate GNN models. In contrast, our NCF model in our multi-corner framework accounts for all the designs and corners involved and thus requires only one model that merely takes 4.12 s per training epoch. It is important to note that the time spent on model tuning has not been considered here, and it is obvious that fine-tuning ⁷⁵⁹ the parameters for 27 models is much more time-consuming 760 than for a single model. The speedups will be even more 761 significant for advanced technology nodes with hundreds or 762 even thousands of corners. Furthermore, Table $XI(b)$ $XI(b)$ compares 763 the time required to identify and generate a file containing the 764 timing variant pins for the 11 designs listed in Table [IV](#page-7-2) for 765 one corner. All three frameworks exhibit similar performance ⁷⁶⁶ in this aspect. Additionally, it is worth noting that our 767 framework is able to identify timing variant pins for unseen ⁷⁶⁸ designs. Therefore, it is reasonable to compare the model ⁷⁶⁹ inference time of our framework with the overall runtime of 770 i TimerM $[3]$. 771

To further analyze the results of multi-corner timing 772 macro modeling, we present 3-D surface plots that illustrate 773 variations in maximum errors and model sizes for various 774 corners and designs, as depicted in Fig. [14.](#page-11-2) These visual- 775 izations are based on the experimental results presented in ⁷⁷⁶ Tables X and XII . Each of the surface plots contains 297 777 data points (27 corners \times 11 designs). In comparison with 778 model sizes, the max errors show more drastic changes across 779 various corners. This phenomenon aligns with the inherent 780 characteristics of timing macro models, wherein the mere ⁷⁸¹ addition or removal of a small number of timing-critical 782 pins can induce significant alterations in timing behavior. ⁷⁸³ Nevertheless, our multi-corner framework maintains a max ⁷⁸⁴ error of less than 2.0 ps for all the corners and designs, 785 which is comparable to the existing works. Additionally, we 786 can observe from Fig. $14(f)$ $14(f)$ that the model sizes of our 787 single-corner framework $[6]$ fluctuate wildly across different 788 corners. It is as expected given that this approach necessitates 789 a unique GNN model for each corner. Consequently, this ⁷⁹⁰ model-by-model strategy may result in unstable performance ⁷⁹¹ due to the uncertainties inherent in the training processes ⁷⁹² for each GNN instance. In contrast, as shown in Fig. $14(g)$ $14(g)$, 793

TABLE X

MULTI-CORNER TIMING MACRO MODELING EXPERIMENTAL RESULTS ON TAU 2016 AND TAU 2017 BENCHMARKS OVER 27 CORNERS. AVERAGE ERROR AND MAX ERROR ARE COMPARED BY DIFFERENCE, WHERE DIFFERENCE = COMPARED RESULT − OUR RESULT. MACRO MODEL SIZE IS COMPARED BASED ON RATIO, WHERE RATIO = COMPARED RESULT/OUR RESULT

	iTimerM [3]					Our Single Corner [6]				Our Multi-Corner					
Design	Average	Max Error (ps)		Model Size (MB)		Average	Max Error (ps)		Model Size (MB)		Average	Max Error (ps)		Model Size (MB)	
	Error (ps)	average	max	average	max	Error (ps)	average	max	average	max	Error (ps)	average	max	average	max
mgc_edit_dist_iccad_eval	0.0005	0.217	1.293	66.7	69.0	0.0008	0.183	0.613	87.4	101.0	0.0188	0.702	1.855	54.1	55.0
vga_lcd_iccad_eval	0.0005	0.064	0.309	65.4	78.0	0.0017	0.284	0.878	65.2	68.0	0.0005	0.067	0.309	80.2	96.0
leon3mp_iccad_eval	0.0004	0.118	1.031	47.0	47.0	0.0004	0.133	1.031	$31.\overline{8}$	33.0	0.0058	0.491	1.031	36.0	36.0
netcard iccad eval	0.0005	0.188	1.838	219.7	220.0	0.0008	0.219	1.838	198.3	225.0	0.0021	0.352	1.838	203.9	205.0
leon2_iccad_eval	0.0004	0.146	1.771	375.0	376.0	0.0008	0.183	1.771	345.5	360.0	0.0046	0.309	0.599	371.6	373.0
mgc_edit_dist_iccad	0.0002	0.006	0.008	68.0	73.0	0.0003	0.017	0.072	74.9	86.0	0.0096	0.185	0.343	60.0	60.0
vga_lcd_iccad	0.0004	0.042	0.225	88.9	101.0	0.0016	0.232	0.969	71.9	77.0	0.0006	0.096	0.225	90.3	112.0
leon3mp iccad	0.0003	0.078	0.132	46.0	47.0	0.0003	0.078	0.132	33.5	36.0	0.0013	0.132	0.249	36.3	37.0
netcard iccad	0.0002	0.028	0.044	247.2	248.0	0.0003	0.031	0.062	246.8	258.0	0.0014	0.124	0.226	232.3	237.0
leon2_iccad	0.0003	0.085	0.112	435.5	436.0	0.0003	0.102	0.146	412.7	462.0	0.0010	0.141	0.240	432.9	433.0
mgc matrix mult iccad	0.0003	0.034	0.132	231.4	278.0	0.0005	0.127	0.264	229.7	259.0	0.0074	0.516	0.871	118.4	119.0
Diffrence / Ratio	-0.0045	-0.192	0.081	.168	1.203	-0.0041	-0.139	-0.001	.103	177	0.0000	0.000	0.000	1.000	1.000

Fig. 14. 3-D surface plots of max errors and model sizes across corners and designs.

⁷⁹⁴ our multi-corner framework consistently demonstrates similar ⁷⁹⁵ model sizes across diverse corners, indicating its adaptability ⁷⁹⁶ to various, and potentially unseen, timing corners.

 2) Exploration of Transfer Learning-Based Approach: As described in Section [V-B,](#page-8-2) our single-corner framework $[6]$ achieves timing accuracy comparable to the state-of-the- art works while reducing model sizes by 10%. Therefore, to enhance the performance of multi-corner timing macro modeling, an intuitive and reasonable approach is to leverage 803 transfer learning (TL) [\[24\]](#page-13-23) and transfer our single-corner results to diverse corners. Specifically, starting from a source corner (we select "tt0p78v25c" in our experiments), we imple- ment our GNN-based single-corner framework for 20 000 epochs on this source corner. Subsequently, we fine-tune the generated timing macro model across the remaining 26 corners (listed in Table [V\)](#page-8-0) for 5000 epochs. The results are listed 810 in Table [XII,](#page-12-3) where the differences and ratios are compared against our multi-corner framework.

 812 Compared to the results in Table [X,](#page-11-1) the TL-based approach 813 achieves the most compact macro model sizes for most ⁸¹⁴ designs. However, it suffers from a significant degradation in 815 timing accuracy. As illustrated in Fig. [14\(](#page-11-2)h), we can observe ⁸¹⁶ the TL-based timing macro models exhibit strikingly uniform 817 model sizes across various corners. We hypothesize that this ⁸¹⁸ uniformity arises due to the heavy reliance of the transferred timing macro models on the source timing macro model. ⁸¹⁹ Consequently, these transferred models fail to discern and ⁸²⁰ retain pins that are uniquely sensitive to the specific corner. ⁸²¹ This deficiency leads to significant accuracy fluctuations across 822 corners, as illustrated in Fig. $14(d)$ $14(d)$. We further observe that 823 the transferred timing macro models tend to consider only ⁸²⁴ clock pins during TS evaluation while ignoring all other pins, ⁸²⁵ resulting in extremely small model sizes but with high-timing 826 errors. 827

To implement the TL-based approach, we still need to 828 generate training data for every corner, as described in ⁸²⁹ Section [IV-D,](#page-6-0) and fine-tune for each target corner. In contrast, 830 our multi-corner framework can produce timing macro models ⁸³¹ that are accurate and compact for various corners, even those 832 we have not seen before, without any additional fine-tuning. 833 Therefore, our multi-corner framework is more efficient and 834 generic than the TL-based approach. 835

3) Results on Unseen Corners: As discussed in ⁸³⁶ Section [III-A,](#page-4-5) a challenging situation occurs when dealing 837 with chiplets that deviate from typical corners. To validate the 838 applicability of our framework in such scenarios, we hide 3 839 corners, "ff0p95v125c," "ss0p75vn40c," and "tt0p85v125c," ⁸⁴⁰ from our training data. Then, we train our NCF model based 841 on the 24 known corners and identify timing variant pins ⁸⁴² in testing designs under both the seen and unseen corners. ⁸⁴³

		iTimerM [3] Our Single Corner [6] Our Multi-Corner	
Inference Runtime	minutes	6 minutes	minutes

TABLE XII ABLATION STUDY ON TRANSFERRING OUR SINGLE-CORNER FRAMEWORK

844 Table [XIII](#page-12-4) shows the evaluation results across all the corners, 845 where the values are averaged across the 11 testing designs 846 in Table [IV.](#page-7-2) It can be observed that the performance on the 847 three unseen corners is comparable to that of the 24 seen 848 corners. Moreover, the max error of the corner "ff0p95v125c" ⁸⁴⁹ (0.0744 ps) falls in a similar range as the max errors of other ⁸⁵⁰ fast/fast process corners (between 0.0595 ps and 0.0826 ps), ⁸⁵¹ and similar trends can also be observed on unseen corners ⁸⁵² "ss0p75vn40c" and "tt0p85v125c." The results indicate that ⁸⁵³ our framework is able to be generalized to arbitrary corners ⁸⁵⁴ and demonstrates the potential for use in off-corner chiplets. ⁸⁵⁵ *4) Acceleration of Training Label Generation:* As dis- 856 cussed in Section [IV-D,](#page-6-0) the training label generation on large ⁸⁵⁷ designs takes an extremely long runtime to complete and ⁸⁵⁸ therefore necessitates using the NCF to speed up the training ⁸⁵⁹ label generation process. To validate the effectiveness of the ⁸⁶⁰ NCF-based training label generation flow, we set the left 13 861 designs in Table [III](#page-7-1) as the "small" training designs and the ⁸⁶² right 6 designs as the "large" training designs. For each small ⁸⁶³ training design, the TS and the timing variability of all pins ⁸⁶⁴ under all corners are evaluated, while those of large training ⁸⁶⁵ designs are evaluated under only 6 corners, ff0p85vn40c, ⁸⁶⁶ ff1p16v125c, ss0p75v25c, ss0p95v125c, tt0p85v125c, and 867 tt1p05v25c. Table [XIV](#page-12-5) shows that the NCF model realizes ⁸⁶⁸ a 4.4X speedup. It is worth noting that within the 16.8 h ⁸⁶⁹ runtime after acceleration, the NCF model training and matrix 870 completion only takes about 10 min, while most of the time 871 is spent on the TS evaluation for the six corners. Thus, the ⁸⁷² acceleration will become more significant if the total number 873 of corners increases. To further testify the quality of the 874 NCF-generated labels, we compare the predicted labels with 875 the golden labels (obtained by performing TS evaluation on 876 the remaining 21 corners). On average, the NCF model can 877 achieve almost 95% prediction accuracy. Thus, the accelerated ⁸⁷⁸ training label generation flow can significantly reduce label

EVALUATION RESULTS ON UNSEEN CORNERS. THE TRAINING DATA CONSISTS SOLELY OF THE UPPER 24 CORNERS, WITH THE BOTTOM THREE CORNERS BEING ENCOUNTERED FOR THE FIRST TIME DURING THE EVALUATION OF THE TESTING DESIGNS

Corner	Model Size (MB)	Avg. Error (ps)	Max Error (ps)
ff0p85v125c	166.3636	0.0018	0.0769
ff0p85v25c	164.1818	0.0020	0.0764
ff0p85vn40c	164,0000	0.0022	0.0826
ff0p95v25c	162.4545	0.0017	0.0693
ff0p95vn40c	159.8182	0.0018	0.0698
ff1p16v125c	166.2727	0.0017	0.0751
ff1p16v25c	161.4545	0.0015	0.0638
ff1p16vn40c	160.6364	0.0014	0.0595
ss0p75v125c	171.7273	0.0042	0.3410
ss0p75v25c	168.6364	0.0044	0.3107
ss0p7v125c	173.7273	0.0045	0.5170
s s $0p$ 7 v 25c	167.5455	0.0045	0.3058
ss0p7vn40c	161.4545	0.0044	0.5778
s s0p95v125c	160.0909	0.0033	0.1218
ss0p95v25c	162.2727	0.0040	0.1500
s s0p95vn40c	162.7273	0.0043	0.1891
tt0p78v125c	165.1818	0.0032	0.1179
tt0p78v25c	171.4545	0.0041	0.1621
$t\text{t0p78vn40c}$	172.4545	0.0044	0.2278
t ttOp $85v25c$	166.2727	0.0036	0.1346
t tt $0p85$ vn $40c$	169.0909	0.0041	0.1606
tt1p05v125c	157.5455	0.0023	0.1015
t tt1p05v25c	158.4545	0.0023	0.0919
tt1p05vn40c	158.6364	0.0026	0.0978
ff0p95v125c	166.4545	0.0017	0.0744
ss0p75vn40c	162.4545	0.0046	0.2858
t t $0p85v125c$	162.0909	0.0028	0.1015

TABLE XIV ACCELERATION OF TRAINING LABEL GENERATION

generation time while maintaining the accuracy of the gener- ⁸⁷⁹ ated labels. $\frac{880}{200}$

VI. CONCLUSION ⁸⁸¹

In this work, we present a novel learning-based single 882 corner timing macro modeling framework that is applicable to 883 various timing analysis models and modes. By leveraging our 884 proposed TS metric and drawing analogies between GNN and ⁸⁸⁵ timing macro modeling, our approach achieves exceptionally 886 high-timing accuracy while further improving the model size 887 than the most accurate state-of-the-art work. Furthermore, we 888 address and formulate the multi-corner timing macro modeling 889 problem. We view the problem from the perspective of recom- ⁸⁹⁰ mendation systems and transform it into a matrix completion ⁸⁹¹ task. We introduce the concept of collaborative filtering and ⁸⁹² propose an NCF-based framework to capture the complex 893 interactions between pins and corners. Through our frame- ⁸⁹⁴ work, high-quality timing macro models are generated for each 895 corner. Experimental results based on Synopsys SAED multi- ⁸⁹⁶ corner libraries $[23]$ and TAU 2016 $[9]$ and TAU 2017 $[10]$ 897 benchmarks show our framework preserves extremely high- ⁸⁹⁸ timing accuracy while reducing more than 10% of model sizes $\frac{1}{2}$ compared to state-of-the-art works. Moreover, our framework 900 achieves a 16X faster model training time and accelerates the ⁹⁰¹ training label generation process by 4.4X. Additionally, based 902 on the evaluation of our prediction results on unseen corners, ⁹⁰³ the applicability of our framework for off-corner chiplets is ⁹⁰⁴

 also validated. Future work includes timing macro modeling for multi-corner multi-mode (MCMM), the development of unified timing macro models for multiple corners, and timing macro modeling for multiple-chiplet integration or subsystems.

⁹⁰⁹ REFERENCES

- ⁹¹⁰ [\[1\]](#page-0-1) A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, "Automated ⁹¹¹ timing model generation," in *Proc. Design Autom. Conf. (DAC)*, 2002, 912 pp. 146-151.
913 [2] T.-Y. Lai, T.
- T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, "LibAbs: An efficient ⁹¹⁴ and accurate timing macro-modeling algorithm for large hierarchi-⁹¹⁵ cal designs," in *Proc. 54th Design Autom. Conf. (DAC)*, 2017, 916 pp. $1-6$.
- 917 [\[3\]](#page-0-1) P.-Y. Lee and I. H.-R. Jiang, "iTimerM: A compact and accurate timing ⁹¹⁸ macro model for efficient hierarchical timing analysis," *ACM Trans.*
- ⁹¹⁹ *Design Autom. Electron. Syst. (TODAES)*, vol. 23, no. 4, pp. 1–21, 2018. ⁹²⁰ [\[4\]](#page-0-2) T.-Y. Lai and M. D. F. Wong, "A highly compressed timing macro-921 modeling algorithm for hierarchical and incremental timing analysis," ⁹²² in *Proc. Asia South Pac. Design Autom. Conf. (ASP-DAC)*, 2018, ⁹²³ pp. 166–171.
- ⁹²⁴ [\[5\]](#page-0-2) K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, "ATM: A high ⁹²⁵ accuracy extracted timing model for hierarchical timing analysis," in ⁹²⁶ *Proc. 26th Asia South Pac. Design Autom. Conf. (ASP-DAC)*, 2021, ⁹²⁷ pp. 278–283.
- 928 [\[6\]](#page-0-3) K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, "Timing ⁹²⁹ macro modeling with graph neural networks," in *Proc. 59th Design* ⁹³⁰ *Autom. Conf. (DAC)*, 2022, pp. 1219–1224.
- 931 [7] M. Andersch et al. "NVIDIA hopper architecture in-depth." 2022.
932 [Online]. Available: https://developer.nvidia.com/blog/nvidia-hopper-[Online]. Available: https://developer.nvidia.com/blog/nvidia-hopper-⁹³³ architecture-in-depth/
- ⁹³⁴ [\[8\]](#page-1-2) B. Bailey. "Taming corner explosion in complex chips." 2023. https:// 935 semiengineering.com/taming-corner-explosion-in-complex-chips/
936 [9] J. Hu. S. Chen. X. Zhao, and X. Chen. "TAU 2016 timing
- ⁹³⁶ [9] J. Hu, S. Chen, X. Zhao, and X. Chen, "TAU 2016 timing contest ⁹³⁷ on macro modeling," 2016. [Online]. Available: https://sites.google.com/ 938 site/taucontest2016/
- ⁹³⁹ [\[10\]](#page-1-3) S. Chen and A. Khandelwal, "TAU 2017 timing contest on macro ⁹⁴⁰ modeling," 2017. [Online]. Available: https://sites.google.com/site/ ⁹⁴¹ taucontest2017/
- ⁹⁴² [\[11\]](#page-1-3) Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, "A ⁹⁴³ comprehensive survey on graph neural networks," *IEEE Trans. Neural*
- ⁹⁴⁴ *Netw. Learn. Syst.*, vol. 32, no. 1, pp. 4–24, Jan. 2021. W. L. Hamilton, R. Ying, and J. Leskovec, "Inductive representation ⁹⁴⁶ learning on large graphs," in *Proc. 31st Int. Conf. Neural Inf. Process.* ⁹⁴⁷ *Syst. (NIPS)*, 2017, pp. 1025–1035.
- ⁹⁴⁸ [\[13\]](#page-3-7) T. N. Kipf and M. Welling, "Semi-supervised classification with graph ⁹⁴⁹ convolutional networks," in *Proc. Int. Conf. Learn. Represent. (ICLR)*,
- 950 2017, pp. 1–14.

951 [14] P.-Y. Lee, I. H.-I P.-Y. Lee, I. H.-R. Jiang et al., "iTimerC 2.0: Fast incremental timing and ⁹⁵² CPPR analysis," in *Proc. Int. Conf. Comput.-Aided Design (ICCAD)*, ⁹⁵³ 2015, pp. 890–894.
- ⁹⁵⁴ [15] S. Onaissi, F. Taraporevala, J. Liu, and F. Najm, "A fast approach for ⁹⁵⁵ static timing analysis covering all PVT corners," in *Proc. 48th Design* ⁹⁵⁶ *Autom. Conf. (DAC)*, 2011, pp. 777–782.
- ⁹⁵⁷ [\[16\]](#page-3-9) A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, ""Unobserved corner" ⁹⁵⁸ prediction: Reducing timing analysis effort for faster design convergence ⁹⁵⁹ in advanced-node design," in *Proc. Design, Autom. Test Eur. Conf.* ⁹⁶⁰ *(DATE)*, 2019, pp. 168–173.
- X. Jiao, D. Ma, W. Chang, and Y. Jiang, "TEVoT: Timing error modeling 962 of functional units under dynamic voltage and temperature variations, ⁹⁶³ in *Proc. 57th Design Autom. Conf. (DAC)*, 2020, pp. 1–6.
- ⁹⁶⁴ [\[18\]](#page-4-6) W. Fu et al., "A cross-layer power and timing evaluation method for ⁹⁶⁵ wide voltage scaling," in *Proc. 57th ACM/IEEE Design Autom. Conf.* ⁹⁶⁶ *(DAC)*, 2020, pp. 1–6.
- S. Bian, M. Hiromoto, M. Shintani, and T. Sato, "LSTA: Learning-⁹⁶⁸ based static timing analysis for high-dimensional correlated on-chip ⁹⁶⁹ variations," in *Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC)*, 970 2017, pp. 1–6.
971 [20] X. He, L. Lia
- X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural 972 collaborative filtering," in $\bar{P}roc$. 26th Int. Conf. World Wide Web (WWW),
973 2017, pp. 173–182. 2017, pp. 173-182.
- ⁹⁷⁴ [\[21\]](#page-4-6) D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 975 in *Proc. Int. Conf. Learn. Represent. (ICLR)*, 2015, pp. 1–15.
976 [22] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "Mixup
- H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "Mixup: Beyond ⁹⁷⁷ empirical risk minimization," 2018, *arXiv:1710.09412*.
- ⁹⁷⁸ [\[23\]](#page-4-7) (Synopsys Inc., Sunnyvale, CA, USA). *SAED_EDK32/28_CORE—* ⁹⁷⁹ *SAED 32/28nm Digital Standard Cell Library*. (2012). [Online]. ⁹⁸⁰ Available: https://solvnetplus.synopsys.com
- 981 [24] F. Zhuang et al., "A comprehensive survey on transfer learning," Proc. ⁹⁸² *IEEE*, vol. 109, no. 1, pp. 43–76, Jan. 2021.

Kevin Kai-Chun Chang received the B.S. degree ⁹⁸³ in electrical engineering from National Taiwan ⁹⁸⁴ University, Taipei, Taiwan, in 2022. He is currently ⁹⁸⁵ pursuing the Ph.D. degree with the Department ⁹⁸⁶ of Electrical Engineering and Computer Sciences, ⁹⁸⁷ University of California at Berkeley, Berkeley, CA, ⁹⁸⁸ USA. 989

His research interests lie in the design and ver- ⁹⁹⁰ ification of cyber–physical systems, autonomous ⁹⁹¹ vehicles, and electronic design automation. 992

Guan-Ting Liu received the B.S. degree in electron- ⁹⁹³ ics engineering with cross-discipline in computer ⁹⁹⁴ science from National Chiao Tung University, ⁹⁹⁵ Hsinchu, Taiwan, in 2018, and the Ph.D. degree ⁹⁹⁶ from the Graduate Institute of Networking and ⁹⁹⁷ Multimedia, National Taiwan University, Taipei, ⁹⁹⁸ Taiwan, in 2024.

He is currently a Research Scientist with NVIDIA ¹⁰⁰⁰ Research Taiwan, Taipei, Taiwan. His research ¹⁰⁰¹ interests include machine learning, reinforcement ¹⁰⁰² learning, and electronic design automation. 1003

Chun-Yao Chiang received the B.S. degree in ¹⁰⁰⁴ electrical engineering from National Sun Yat-sen ¹⁰⁰⁵ University, Kaohsiung, Taiwan, in 2019, and the ¹⁰⁰⁶ M.S. degree in electronic design automation from ¹⁰⁰⁷ the Graduate Institute of Electronics Engineering, 1008
National Taiwan University, Tainei, Taiwan 1009 Taiwan University, Taipei, Taiwan, 1009 in 2021. 1010

He is currently a Software Research and ¹⁰¹¹ Development Engineer with Synopsys Inc., ¹⁰¹² Taipei, Taiwan. His current research interests ¹⁰¹³ include physical design, timing analysis, ¹⁰¹⁴ and IR drop analysis. 1015

Pei-Yu Lee received the Ph.D. degree in electron- ¹⁰¹⁶ ics engineering from the Institute of Electronics, ¹⁰¹⁷ National Chiao Tung University, Hsinchu, Taiwan, ¹⁰¹⁸ $\frac{1018}{1019}$

He is currently a Staff Engineer with Synopsys ¹⁰²⁰ Inc., Hsinchu, Taiwan, and his research interests ¹⁰²¹ include physical design, timing analysis, distributed ¹⁰²² computing, and machine-learning for EDA. 1023

Dr. Lee received Four First Place Awards from ¹⁰²⁴ TAU Timing Contests and the 2017 TSIA Doctoral ¹⁰²⁵ Graduate Student Award. He has served on the ¹⁰²⁶

Program Committees for ASP-DAC and ISPD, and the Contest Chair for ¹⁰²⁷ CADathlon at ICCAD. 1028

Iris Hui-Ru Jiang received the B.S. and Ph.D. ¹⁰²⁹ degrees in electronics engineering from National ¹⁰³⁰ Chiao Tung University, Hsinchu, Taiwan. ¹⁰³¹

She is currently a Professor with the Department 1032 of Electrical Engineering and Graduate Institute ¹⁰³³ of Electronics Engineering, National Taiwan ¹⁰³⁴ University, Taipei, Taiwan. Her current research ¹⁰³⁵ interests include timing analysis and optimization ¹⁰³⁶ and design for manufacturability. 1037

Dr. Jiang has served as the General Chair for ¹⁰³⁸ ISPD, the Program Chair for ISPD and ASP-DAC, ¹⁰³⁹

and the Associate Editor for IEEE TRANSACTIONS ON COMPUTER-AIDED ¹⁰⁴⁰ DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. 1041