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Abstract. Simulation-based falsification has proved to be an effective verifica-
tion method for cyber-physical systems. Traditional approaches to falsification
take as input a single or a set of temporal properties that must be satisfied by
the system at all times. In this paper, we consider falsification of a more complex
specification with two dimensions: multiple objectives with relative priorities and
the evolution of these objectives characterized by time-varying priorities. We in-
troduce the concept of dynamic rulebooks as a way to specify a prioritized multi-
objective specification and its evolution over time. We develop a novel algorithm
for falsifying a dynamic rulebook specification on a cyber-physical system. To
evaluate our approach, we define scenarios and dynamic rulebook specifications
for the domains of autonomous driving and human-robot interaction. Our experi-
ments demonstrate that integrating dynamic rulebooks allows us to capture coun-
terexamples more accurately and efficiently than when using static rulebooks.
Moreover, our falsification framework identifies more numerous and more sig-
nificant counterexamples as compared to previous approaches.

Keywords: Formal methods · Falsification · Specification · Dynamic Rulebooks
· Cyber-physical systems · Autonomous driving · Human-robot interaction

1 Introduction

Simulation-based formal analysis, such as temporal logic falsification (e.g., [1,2,6,17]),
has proved to be effective in finding safety violations in cyber-physical systems (CPS)
and autonomous systems enabled by artificial intelligence (AI). Numerous approaches
have been proposed over the past two decades (e.g., see [18]). However, traditional
approaches to falsification take as input a single or a set of temporal properties (con-
straints) that must be satisfied by the system at all times. As described in [14], AI-
enabled autonomous systems have two important features that necessitate advances in
simulation-based verification: the specification of multiple Boolean or quantitative con-
straints with relative priorities, and the dynamic nature of constraints and their chang-
ing priority relations over time.

As a motivating example, consider a toy autonomous vehicle scenario shown in
Fig. 1a, where the ego vehicle has no other moving vehicles or people around it but faces
an in-lane obstruction (such as a stalled car/road work barrier) that requires crossing the
centerline of the road to avoid collision. However, this behavior violates traffic rules,
presenting a scenario in which the autonomous vehicle must balance two constraints:
“obeying traffic rules” and “avoiding the temporary obstruction.” Different constraints
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Fig. 1: Toy scenario with lane-keeping and obstruction avoidance.

may inherently conflict, as is evident in Fig. 1a, where the ego vehicle cannot simultane-
ously avoid the obstruction and adhere to traffic rules. In this case, constraints become
objectives as they cannot be satisfied simultaneously. By doing so, we can handle con-
straints in a more flexible way, prioritizing and trading them off. In this example, it is
reasonable to prioritize avoiding collision with the obstruction over strict adherence to
traffic rules when the ego vehicle is close to the obstacle, acknowledging that temporar-
ily crossing the centerline may be deemed safe if no oncoming traffic is present, while
colliding with the obstacle poses potential harm to passengers in the ego vehicle.

In addition to managing multiple objectives, the dynamics of autonomous CPS must
also be taken into account. In the aforementioned scenario, the priorities among objec-
tives can evolve over time. While the ego vehicle should prioritize avoiding collision
when close to the temporary obstruction, it should prioritize obeying traffic rules when
the obstruction is still far away to avoid crossing the centerline prematurely. Addition-
ally, once the vehicle successfully navigates around the obstruction, it can deactivate
the “avoiding the obstruction” objective and refocus on “obeying traffic rules” until an-
other obstruction is detected. This example illustrates how both the objectives and their
priorities can change dynamically in an autonomous CPS.

Censi et al. [4] proposed a rulebook structure to specify a set of objectives and their
priority relations. However, the set and the relations are static, making it inadequate for
addressing the dynamic nature of CPS. Viswanadha et al. [16] gave a falsification frame-
work for multi-objective CPS specified with rulebook structures. This framework also
assumed static settings where the objectives and their priorities remain fixed throughout
the scenario. To the best of our knowledge, no prior work has explored the falsification
problem for dynamic, multi-objective specifications. In this paper, we address the gap
by proposing a dynamic, multi-objective specification structure and give a novel algo-
rithm for falsification of such structures. Our contributions are as follows.
• Formulation of dynamic rulebooks capable of specifying CPS where the set of ob-

jectives and priority relations can change over time.
• Development of an efficient algorithm for falsifying CPS whose requirements can be

modeled with dynamic rulebooks.
• Introduction of a generic falsification framework that facilitates on-the-fly construc-

tion of rulebooks.
• Experimental demonstration of our specification formalism and falsification algo-

rithm in the domains of autonomous driving and human-robot interaction.

The remainder of this paper is organized as follows: Section 2 formulates the con-
cept of dynamic rulebook. Section 3 defines the dynamic and multi-objective CPS fal-
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sification problem. Section 4 details our falsification framework. Section 5 develops
rules and scenarios in the domains of autonomous driving and human-robot interaction.
Section 6 shows experimental results. Finally, Section 7 concludes this paper.

2 Formulation of Dynamic Rulebooks

To verify a dynamic, multi-objective CPS, it is essential to assess its behavior under var-
ious conditions or inputs. To formalize this, we introduce the concept of a scenario, rep-
resented as a closed transition system over a set of state variables V = {v1, v2, ..., vn}
with domains {Dv1 ,Dv2 , ...,Dvn}:

Definition 1 (Scenario). A scenario M is a closed transition system M = (V, V0, δP ),
where V is the set of state variables, V0 is the set of initial value vectors of the state
variables, and δP : (Dv1 ×Dv2 × ...×Dvn)×(Dv1 ×Dv2

× ...×Dvn) → B is the tran-
sition relation. Here, V := Vr ∪Vc, where Vr is a set of random variables whose initial
values are internally sampled by the scenario1, while Vc is a set of random variables
for which we need to sample their initial values. The transition relation δP (

−→v ,−→v ′) is
true if and only if there is a transition from values −→v to −→v ′.

The transition relation δP is determined by a set of parameters P = {p1, p2, ..., pm},
which are not state variables, with domains {Dp1

,Dp2
, ...,Dpm

}. We can then define
the input feature set and the input feature space of a scenario:

Definition 2 (Input Feature Set and Input Feature Space). The input feature set F
encompasses all features used as inputs to a scenario M , determining the initial states
and transitions of the scenario. Hence, F = Vc ∪ P . The input feature space F is the
domain that encompasses all the variables in F .

Scenario 1 (Lane-Keeping and Obstruction Avoidance). Here, we leverage the sce-
nario depicted in Fig. 1 as a running example to elaborate on our formulation. In this
scenario, Vc comprises the x and y positions of the ego vehicle, while the remaining
state variables, such as the ego vehicle’s orientation and model, are included in Vr.
The transition relation updates the state variables based on the vehicle’s dynamics in
the simulation. The set of parameters P includes the target speed of the ego vehicle, the
initial distance from the ego vehicle to the obstruction, and the distance to the obstruc-
tion at the start of lane change, which can affect the transition dynamics. For example,
given the sampled target speed of the ego vehicle, the acceleration of the ego vehicle is
adjusted based on the difference between the current speed and the target speed, thus
influencing the subsequent positions of the ego vehicle. Finally, the input feature set F
consists of the parameters along with the positions of the ego vehicle, i.e., F = Vc ∪P .

Now, given a scenario M , our aim is to verify if, under an input feature vector
−→
f ∈ F , the trajectories of the scenario (i.e., the values of each state variable vi ∈ V
at each timestamp) meet the desired constraints or objectives, referred to as rules. To
evaluate if a rule is violated, we define the violation score of a rule as follows:

1 In probabilistic CPS modeling languages such as Scenic [8], internally-sampled variables can
be implicitly sampled from prior distributions
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Definition 3 (Rule and Violation Score). Given a scenario M = (V, V0, δP ), the vi-
olation score (VS) s of a rule r can be expressed as a function s : F → R.2 In this
paper, we design the VS such that it is negative if and only if the corresponding rule is
violated. Furthermore, the lower the VS, the more severely the rule is violated.

Scenario 1. (continued) We define the two rules, r1 and r2, along with their VS. These
rules are expressed using signal temporal logic (STL) formulas [11]:

– r1 (avoiding the temporary obstruction):

STL: G[T1,T2](dist(x0(t), xobs(t)) ≥ dsafe);

VS: min[T1,T2](dist(x0(t), xobs(t))− dsafe),

where x0(t) and xobs(t) are the positions of the ego vehicle and the in-lane obstruc-
tion, respectively; G[T1,T2] indicates the predicate inside the parentheses should
always be true within the time interval [T1, T2].

– r2 (obeying the traffic rule of not crossing the centerline):

STL: G[T1,T2](dist(x0(t), L) = 0);VS: − max[T1,T2](dist(x0(t), L)),

where L denotes the polygon region of the lane, and dist(x0(t), L) indicates the
minimum distance from the ego vehicle to the polygon. If the vehicle is within the
polygon (i.e., it is on the lane), dist(x0(t), L) = 0.

Indeed, VS is negative if and only if the ego vehicle violates the corresponding rule, and
the lower the VS, the more severe the violation.

After defining the rules, we can introduce the static rulebook as proposed in [4],
which specifies the rules and their priorities in a static multi-objective system.

Definition 4 (Static Rulebook). A static rulebook B is a tuple B = (R,≤R), where
R is a set of rules and ≤R is a partial order on R indicating the relative priority of the
rules. A static rulebook can be represented as a directed graph GB = (VB , EB), where
each node in VB represents a rule, and each edge in EB indicates the priority relation
between two rules. If there is an edge from node A to node B, then rule rA has a higher
priority than rB .

Finally, we propose the definition of dynamic rulebook for dynamic, multi-objective
systems:

Definition 5 (Dynamic Rulebook). The dynamic rulebook BM for a scenario M is
a tuple BM = (RM ,≤RM

, UM ). Similar to the static rulebook, RM is a set of rules
and ≤RM

is a partial order on RM . However, the key difference lies in the dependency
of RM and ≤RM

on the state variables of the scenario M . As the state variables in
M change, both RM and ≤RM

can be updated, unlike in the static rulebook where
R and ≤R remain fixed. Rules may be added or removed from RM , and the priority

2 We denote the function s in this way for simplicity. Actually, the function maps the trajectory
generated under an input feature vector

−→
f ∈ F to R.
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among rules may also change. Formally, UM is a transition function that defines these
updates. Given the current RM , ≤RM

, and the values of the state variables in M , UM

outputs the updated RM and ≤RM
. A dynamic rulebook BM can also be depicted as

an evolving directed graph GBM
= (VBM

, EBM
). With changes in state variables in

M , nodes may be added or removed from the graph, and edges may be added, removed,
or reversed.

Property 1 (Segmentation of a Dynamic Rulebook). Each time the state variables in M
change, RM and ≤RM

of a dynamic rulebook may be updated. Thus, from another
perspective, a dynamic rulebook can be viewed as a sequence of static rulebooks, de-
noted BM = {B1, B2, B3, ...}, where Bi is updated to Bi+1 with some state changes.
Similarly, the graphical representation of a dynamic rulebook can also be viewed as a
sequence of directed graphs. We refer to the time segment corresponding to the static
rulebook Bi as the i-th segment of scenario M .

For simplicity, unless otherwise specified, the “rulebook” refers to the “dynamic
rulebook” throughout the remainder of this paper. The rulebook for Scenario 1 can be
defined as follows:

Scenario 1. (continued) As shown in Fig. 1b, the rulebook can evolve over time based
on the position of the ego vehicle. Initially, when the ego vehicle is still far from the
obstruction, r2 has a higher priority than r1 to prevent premature crossing of the cen-
terline. As the ego vehicle approaches the obstruction (i.e., when the distance is less
than a threshold dc), r1 gains priority to ensure the avoidance of the obstruction. Once
the obstruction is successfully avoided (i.e., when the distance again exceeds dc), r1 is
removed from the rulebook (indicated by the dashed circle in Fig. 1b).

3 Problem Formulation

The dynamic, multi-objective CPS falsification problem can be formulated as follows:
Given a scenario M = (V, V0, δP ) along with the corresponding dynamic rulebook

BM = (RM ,≤RM
, UM ), which can be viewed as a sequence of static rulebooks, our

goal is to sample from the input feature space F to identify feature vectors that vio-
late higher-priority rules and find more number of counterexamples, for all the static
rulebooks in the sequence.

Formally, given two input feature vectors
−→
f1 and

−→
f2 ,

−→
f1 falsifies more than

−→
f2 for

segment k if the following formula holds for the static rulebook Bk:

∀i · [si(
−→
f2) < si(

−→
f1)

=⇒ ∃j · ((ri <Rk
rj) ∧ (sj(

−→
f1) < sj(

−→
f2)))], (1)

where ri and rj are rules with corresponding VS si and sj , respectively. Recall that
lower values output by si (or sj) indicate more severe rule violations. Thus, the for-
mula expresses that if

−→
f2 violates some rule i more severely than

−→
f1 , then there must

exist a higher-priority rule j such that
−→
f1 violates more severely than

−→
f2 on rule j. For

simplicity, input feature vectors that lead to violations of some rules are called coun-
terexamples in the remainder of the paper. Also, input feature vectors that falsify more
severely are called “larger” counterexamples.
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Fig. 2: Our falsification framework.

4 Our Framework

4.1 Overview of Our Framework

Fig. 2 outlines our falsification framework. As explained in Property 1, a dynamic rule-
book BM can be understood as a sequence of static rulebooks {B1, B2, B3, ...}. In our
approach, we create a dedicated sampler for each static rulebook in the sequence (Step
1). During the sampling process (Step 2), in each iteration, one of these samplers is
chosen to generate a sample. The selection of samplers follows a sequential style: first,
Sampler 1 is chosen for N iterations, where N is a user-defined number; then Sampler
2 for another N iterations, then Sampler 3 for another N iterations, and so on. The gen-
erated sample is sent to the simulator for scenario simulation (Step 3), which produces
a trajectory recording the state variable values in V at each timestamp t ∈ [0, T ], where
T represents the simulation time interval. The trajectory is segmented into segments,
each corresponding to a static rulebook (Step 4). Following trajectory decomposition,
rules of each static rulebook Bk = (Rk,≤Rk

) are evaluated on the corresponding seg-
ment. The evaluation yields −→ρk, encompassing the VS of all the rules in Rk, which is
forwarded to the respective sampler as feedback. The sampler is then updated accord-
ingly, and we proceed to sample for the next iteration (Step 2). This process iterates
through Steps 2 to 4 until all samplers have been sampled N times.

4.2 Our Sampling Algorithm

In [16], the multi-armed bandit (MAB) sampling strategy is proposed, which is extended
from [3] and the cross-entropy sampling algorithm [13]. This approach partitions each
dimension of the sample space into multiple buckets and selects a bucket for sampling
during each iteration. The fundamental principle of the sampler is to balance between
exploitation and exploration: it seeks to identify samples that violate high-priority rules
(exploitation), while also diversifying generated samples across the sample space (ex-
ploration). To achieve this balance, two matrices, R and T , are employed. The ex-
ploitation matrix R records the source buckets of the current maximal counterexample,
while the exploration matrix T is inversely proportional to the frequency of visits to
each bucket. These matrices are then combined into a single matrix Q, from which the
sampler selects the bucket with the highest corresponding value.
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Algorithm 1: Initialization of Sampler k
Input: The feature set F and the feature domain F , the bucket size N , and the static

rulebook Bk = (Rk,≤Rk )
1 d← |F |; // the dimension of the feature set
2 Ed×N ← O; // initialize the error matrix as a zero matrix
3 Cd×N ← J ; // initialize the count matrix as an all-one

matrix
4 t← 1; // the iteration count
5 i← 0;
6 emax ← 0;
7 foreach rule r in Rk do
8 m← number of rules have lower priorities than r;
9 −→w [i]← 2m; // the error weight

10 emax ← emax + 2m;
11 i← i+ 1;
12 end

However, a limitation of the MAB approach is its reliance solely on information
from the currently identified maximal counterexample. Consequently, in scenarios with
complex rulebooks, it may become trapped in local optima, making it challenging to
identify larger counterexamples. Moreover, the MAB sampler lacks a mechanism for
distinguishing between different counterexamples. Specifically, it always increments
the corresponding entry in R regardless of the magnitude of the counterexample.

To address these limitations, we introduce the concept of error weight w:

Definition 6 (Error Weight of a Rule). For a rule r within a static rulebook B =
(R,≤R), suppose there are m number of rules which are lower in priority than r, the
error weight wr of r is defined as 2m.

Subsequently, whenever a counterexample is discovered, the error weights of the
violated rules are aggregated to form the error value e, which indicates the magnitude
of the counterexample.

Example 1 (Error Weight and Error Values). Consider a static rulebook B = {R,≤R}
consisting of four rules r1, r2, r3, and r4, where r4 >R r3 =R r2 >R r1. The error
weights for rules r4, r3, r2, and r1 are 8, 2, 2, and 1, respectively. If a counterexample
violates r4, r2, and r1, its error value will be 8 + 2 + 1 = 11.

Proposition 1. Given two counterexamples
−→
f1 and

−→
f2 ,

−→
f1 has a higher error value than−→

f2 if it falsifies more than
−→
f2 based on the definition in Section 3.

Algorithms 1, 2, and 3 detail our sampling approach. In the initialization phase
(Algorithm 1), an error matrix E and a count matrix C are initialized. Both matrices are
of size d×N , where d is the dimension of the feature set and N represents the bucket
size. Additionally, following Definition 6, the error weight of each rule is computed
and stored in the error weight vector −→w (Lines 6 to 12). The sum of error weights,
representing the maximum error value of a counterexample, is stored as emax.

During the updating phase (Algorithm 2), a feedback vector −→ρk and a source bucket
vector

−→
b are input. −→ρk consists of the output violation scores of all the rules in the
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Algorithm 2: Updating of Sampler k

Input: The feedback vector −→ρk and the source bucket vector
−→
b

1 e← 0;
2 for i← 0 to |Rk| − 1 do
3 if −→ρk[i] < 0 then
4 e← e+−→w [i]
5 end
6 end
7 for i← 0 to d do
8 j ←

−→
b [i];

9 E [i][j]← E [i][j] + e;
10 C[i][j]← C[i][j] + emax;
11 t← t+ 1;
12 end

rulebook.
−→
b contains the source buckets of the current sample. For example, if the i-th

feature is sampled from the j-th bucket, then
−→
b [i] = j. In Lines 1 to 6, the sampler

computes the corresponding error value based on −→ρk. In Lines 7 to 12, for each i-th
dimension of the feature space, the source bucket

−→
b [i] is extracted. The error value

is then added to the corresponding entry of E , and emax is added to the corresponding
entry of C. This ensures that if sampling from the j-th bucket for the i-th feature leads to
a greater number of and larger counterexamples, E [i][j] will become larger. Similarly,
the magnitude of entries in C reflects the sampling frequency from the corresponding
bucket.

After sampler updating, in the sampling phase (Algorithm 3), we normalize the
error matrix by performing element-wise division of E by C and set the result as the ex-
ploitation matrix R. Since R is proportional to E , it encourages the sampler to sample
more from the buckets that have generated more and larger counterexamples. For the
exploration aspect, we adopt the definition of from [16], setting the exploration matrix

T as
√

ln(t)
C , where t is the current sampling iteration. Since the exploration matrix

is inversely correlated to the sampling frequency C, it encourages sampling from less
frequently visited buckets. We then introduce a balance coefficient δ to control the bal-
ance between the two terms, combining them into matrix Q. For each dimension of the
feature space, the bucket corresponding to the highest entry value in Q is selected for
sampling.

Example 2 demonstrates efficiency of our sampling approach over the MAB strat-
egy:

Example 2 (Comparison of Our Sampling Approach against the MAB approach). Con-
sider a static rulebook B = {R,≤R} consisting of five rules r1, r2, r3, r4, and r5, where
r5 >R r4 >R r3 >R r2 >R r1. Suppose at some point during the falsification process,
a counterexample is found that violates r1, r2, r3, and r4, making it the current maximal
counterexample. Later, a larger counterexample is found that violates only r5.

In the previous MAB approach, upon finding the new maximal counterexample,
all information pertaining to previous counterexamples is discarded. Consequently, the
sampler must “rediscover” the buckets associated with violations of r1, r2, r3, and r4.
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Algorithm 3: Sampling from Sampler k
Input: The balance coefficient δ
Output: A feature vector (i.e., sample)

−→
f ∈ F and a source bucket vector

−→
b

1 R← E/C; // element-wise division

2 T ←
√

ln(t)
C ; // element-wise division

3 Q ← R+
√
δ · T ;

4 for i← 0 to d do
5 j∗ ← argmaxjQ[i][j];
6

−→
f [i]← uniformly randomly sample from the range of bucket j∗;

7
−→
b [i]← j∗;

8 end
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Fig. 3: Our generic falsification framework.

On the contrary, our sampling strategy leverages information from both types of coun-
terexamples, facilitating the efficient discovery of even larger counterexamples (e.g.
those violating all rules r1, r2, r3, r4, and r5). Furthermore, employing our error weight
scheme, the error values of the two counterexamples are 15 and 16, respectively. These
values reflect the “importance” of the counterexamples and serves as weights during
sampler updating.

4.3 Extension to a Generic Framework

In our problem formulation, we assume the dynamic rulebook BM is given. Specifi-
cally, the corresponding sequence of static rulebooks is predetermined before the falsi-
fication process starts. However, in some scenarios, updates to the rulebook may vary
from one simulation iteration to another, depending on the trajectories of state variables.
Under such circumstances, the falsification framework proposed in Sections 4.1 and 4.2
becomes infeasible. An example of this type of scenario is provided in Scenario 4.

To accommodate this variability, we propose a more versatile framework employing
a “unified” sampler, as shown in Fig. 3. Unlike dedicated samplers for individual static
rulebooks, a single unified sampler generates samples throughout the entire falsification
process. Moreover, the rulebook is not predefined; rather, it is constructed iteratively
based on simulator-generated trajectories.
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The initialization of the unified sampler mirrors Algorithm 1, with the key distinc-
tion that error weights are computed before each update. Sampling from the sampler
also resembles Algorithm 3. For sampler updating, we have to consider the feedback
vectors from all segments, −→ρ1,−→ρ2, ...,−→ρi . To facilitate this, we introduce the concept of
normalized error value:

Definition 7 (Normalized Error Value). As defined in Section 4.2, the error value e
of a counterexample is the sum of error weights of violated rules. The normalized error
value enorm is computed as the ratio of error value e to the maximum possible error
value emax (i.e., the error value when all rules are violated), expressed as enorm =

e
emax

.

Taking the rulebook defined in Example 1 as an example, the maximum error value
(emax) is the sum of the error weights of all rules, which is 13. If a counterexample
violates r4, r2, and r1, its normalized error value (enorm) will be 11

13 ≈ 0.846.
Given rulebook B and feedback vectors −→ρ1,−→ρ2, ...,−→ρi , the sampler computes er-

ror weights and normalized error values. Subsequently, segment-wise normalized error
values are averaged to derive the average error value eavg. Lastly, eavg is added to
the corresponding entry of E , while the corresponding entry of C is incremented by 1,
reflecting eavg’s range between 0 and 1.

Although the generic falsification framework supports on-the-fly rulebook construc-
tion, it may not outperform the scenario-segmentation-based framework when the rule-
book is available in advance. While the framework with a unified sampler can implicitly
account for dependencies between segments, it also records less information compared
to the framework with dedicated samplers. In Section 6.1, we provide a thorough com-
parison of the two frameworks.

5 Scenarios
To validate the effectiveness of our falsification framework, we construct multiple sce-
narios spanning the domains of autonomous driving and human-robot interaction. These
scenarios are designed to simulate real-world situations while examining the variability
of rulebooks. Before diving into specific scenarios, we first define four kinds of funda-
mental rules, along with their VS, that are essential in both domains [10, 15]:

Rule A (Distance). Two objects i and j, with positions xi(t) and xj(t), must maintain
a safe distance from each other within a specified time interval, denoted as rA,i,j .

STL: G[T1,T2](dist(xi(t), xj(t)) ≥ dsafe);VS: min[T1,T2](dist(xi(t), xj(t))− dsafe)

Rule B (Staying in Region). An object i, with position xi(t), must stay within a spe-
cific region during a specified time interval, denoted as rB,i,reg , where “reg” denotes
the region.

STL: G[T1,T2](dist(xi(t), reg) == 0);VS: − max[T1,T2](dist(xi(t), reg))

Rule C (Reaching Goal). An object i, with position xi(t), must reach its destination
within a specified time interval, denoted as rC,i,goal, where “goal” denotes the desti-
nation region.

STL: F[T1,T2](dist(xi(t), goal) == 0);VS: − min[T1,T2](dist(xi(t), goal))
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Rule D (Lane Keeping). An object i, with position xi(t), must not deviate too far from
the center of a specified lane within a specified time interval, denoted as rD,i,cent, where
“cent” denotes the center of the lane.

STL: G[T1,T2](dist(xi(t), cent) ≤ dkeep);VS: dkeep − max[T1,T2](dist(xi(t), cent))

It’s important to note that the above rules are abstract and can be refined into mul-
tiple instances in practical scenarios. For example, each pair of pedestrians, vehicles,
or objects on the road may require a distinct instance of Rule A. Additionally, the safe
distance dsafe and the lane-keeping distance dkeep may vary across different instances.

In addition to the obstruction avoidance scenario (Scenario 1), we have developed
three additional scenarios within the autonomous driving domain. We use 0 to denote
the ego vehicle, positive integers (1, 2, ...) to represent other vehicles, and negative inte-
gers (−1,−2, ...) to indicate pedestrians. For example, rA,0,1 specifies the requirement
to maintain a safe distance between the ego vehicle and vehicle 1.

Scenario 2 (Lane Change). Fig. 4a illustrates a lane change scenario, and Fig. 4b
illustrates the corresponding rulebook. In this scenario, the ego vehicle intends to tran-
sition from the right lane to the left lane. Prior to initiating the lane change, the vehicle
must maintain a safe distance from vehicle 1 (rA,0,1) and attempt to overtake vehicle
2 to finish lane change (rC,0,ll, where ll denotes the left lane). Upon successfully com-
pleting the lane change, the rules become maintaining a safe distance from vehicles 3
(rA,0,3) and 2 (rA,0,2).

A noteworthy aspect of the rulebook is the disjoint nature of nodes in the two seg-
ments. This feature enables the evaluation of our framework’s performance under sig-
nificant rule changes.

Scenario 3 (Lane Keeping and Intersection Crossing). Fig. 5 illustrates a lane keep-
ing and intersection crossing scenario, segmented into three parts. In the first segment,
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the ego vehicle performs lane keeping on an incoming lane of an intersection. The goal
is to reach the intersection (denoted as “inter”). Moving to the second segment, upon
reaching the intersection, the ego vehicle aims to make a right turn amidst the presence
of other vehicles and a pedestrian crossing and reach the outgoing lane (denoted as
“ol”). Finally, in the third segment, the ego vehicle resumes lane keeping on the outgo-
ing lane. Throughout this process, the ego vehicle must adhere to rules ensuring a safe
distance from pedestrians and other vehicles, as well as remaining within the drivable
area (denoted as “da”). Formally, the rulebook for this scenario is defined as follows:

Segment 1: rA,0,1 > rB,0,da > rC,0,inter > rD,0,cent

Segment 2: rA,0,−1 > rA,0,1 = rA,0,2 = rA,0,3 = rA,0,4 > rB,0,da > rC,0,ol

Segment 3: rA,0,2 = rA,0,3 = rA,0,4 > rB,0,da > rD,0,cent

Scenario 4 (Intersection Management). In this scenario, we shift our perspective
from the ego vehicle to a centralized intersection manager. This manager employs a
first-come-first-serve principle to determine the passing order of vehicles at the inter-
section. Upon a vehicle’s arrival, it informs the manager, who then adds it to the waiting
queue. As the intersection becomes vacant, the manager allows the vehicle at the fore-
front of the queue to proceed while others must halt. The manager ensures the correct
passing order while maintaining safe distances between vehicles.

To model the rulebook for this scenario, rules are dynamically added or removed
as vehicles arrive or depart. When a new vehicle joins the queue, distance rules be-
tween it and existing vehicles are appended to the rulebook, alongside a rule enforc-
ing the sequential passing order. For example, assume the current waiting queue is
q = {V1, V2, ..., Vi} and a vehicle Vi+1 arrives, rules rA,1,i+1, rA,2,i+1, ..., rA,i,i+1

and a rule enforcing “Vi must exit the intersection before Vi+1” are added. Conversely,
when a vehicle exits, the corresponding rules are removed. The distance rules hold
higher priority than the passing order rule.

Given the varying order of vehicle arrivals and departures across simulations, the
rulebook must be constructed on-the-fly during falsification.

For objects in the human-robot interaction (HRI) domain, we use 0 to denote the
ego robot, positive integers to represent obstacles or other robots, and negative integers
to indicate humans. For example, rA,0,−1 specifies the requirement to maintain a safe
distance between the ego robot and human 1.

Scenario 5 (Object Fetching and Delivery). Figure 6 illustrates this scenario. In the
first segment, the ego robot aims to grab a box of important documents from a bed
while avoiding a human organizing clothes nearby. In the second segment, the human
moves from the bedroom to the living room for work, and the ego robot must deliver the
documents to the human while avoiding another robot vacuuming the area. Formally,
the rulebook can be defined as follows:

Segment 1: rA,0,−1 > rC,0,box; Segment 2: rA,0,1 > rC,0,−1

A noteworthy aspect of this rulebook is that in Segment 1, the robot must maintain a
safe distance from the human (rA,0,−1), while in Segment 2, the robot aims to approach
the human (rC,0,−1). This reflects how interactions between objects in an autonomous
CPS evolve over time.
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6 Experiments

We conducted our experiments on a Ubuntu 20.04 Linux workstation equipped with a
3.7 GHz CPU and 64 GB of RAM. The scenarios are described using the Scenic pro-
gramming language [7, 8]. Scenic is a domain-specific probabilistic programming lan-
guage tailored for formally describing scenarios in CPS, encompassing domains such
as autonomous driving and robotics. The falsification framework is implemented in
Python 3. In addition, our framework is seamlessly integrated with VerifAI [6], a for-
mal verification environment offering a range of built-in sampling algorithms.

For the experiments in the autonomous driving domain, we utilized the Scenic built-
in Newtonian simulator and the CARLA simulator [5]. For experiments in the robotics
domain, we used the Meta Habitat 3.0 simulator [12] that offers modeling and simu-
lation of both robots and humanoids. For each segment within every scenario in the
autonomous driving domain, we selected three different random seeds and perform 300
iterations per seed, resulting in a total of 900 samples per segment. Similarly, for Sce-
nario 5 in the HRI domain, we used three different random seeds with 200 iterations per
seed, resulting in a total of 600 samples per segment. For each input feature, we divide
its range into 5 buckets. The balance coefficient δ is set to 2 for the autonomous driving
experiments and 1 for the HRI experiments.

To assess the capabilities of our falsification approach, we employ several metrics,
including the maximum normalized error value among all samples (Max enorm), the
average normalized error value of all samples (Avg. enorm), the percentage of the max-
imum counterexample out of all samples (Pct. Max CE), and the percentage of coun-
terexamples out of all samples (Pct. CE). Note that due to its definition, enorm may not
be suitable for comparisons across different rulebooks.

6.1 Results

In this section, our aim is to address three research questions.
RQ1: Would using a dynamic rulebook result in finding more number of and

larger counterexamples than a monolithic static rulebook? Table 1 compares the
falsification results obtained using (1) dynamic rulebook with our sampling algorithm
depicted in Fig. 2, (2) static rulebook with our sampling algorithm depicted in Fig. 2,
and (3) static rulebook with the MAB algorithm, which has been shown to perform best
among previous sampling approaches for static multi-objective systems in [16]. For
experiments with static rulebooks, we combined the static rulebooks from each segment
into a monolithic static rulebook, manually adjusting the priorities to encompass the
requirements across all segments of a scenario. For Scenario 1, the monolithic static
rulebook includes r1 and r2 with the same priority level. For Scenario 2, as the rules
in the two static rulebooks are disjoint, they can be merged into a monolithic static
rulebook directly. This results in a rulebook with 4 rules (rA,0,1, rC,0,ll, rA,0,2, rA,0,3)
and 2 edges (rA,0,1 pointing to rC,0,ll and rA,0,3 pointing to rA,0,2). For Scenario 3, the
monolithic static rulebook includes all the rules, prioritizing rA,0,−1 highest, followed
by all rA-type rules, then rB,0,da, all rC-type rules, and finally rD,0,cent. Notably, for
Scenario 5, however, the conflicting rules rA,0,−1 (maintaining a safe distance from
the human) in Segment 1 and rC,0,−1 (approaching the human) in Segment 2 make it
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Table 1: Comparison of dynamic and static rulebooks.
Rulebook Scen./Seg. Max enorm Avg. enorm Pct. Max CE Pct. CE Scen./Seg. Max enorm Avg. enorm Pct. Max CE Pct. CE
Dynamic

1/1
1.000 0.313 31.3% 31.3%

3/1
0.733 0.547 7.7% 99.0%

Static 1.000 0.057 5.7% 5.7% 0.733 0.530 0.3% 98.3%
Static+MAB 1.000 0.057 5.7% 5.7% 0.733 0.521 2.0% 96.3%

Dynamic
1/2

1.000 0.725 58.8% 100.0%
3/2

0.976 0.819 20.7% 98.0%
Static 1.000 0.673 50.9% 100.0% 0.976 0.719 15.0% 96.3%

Static+MAB 1.000 0.623 43.4% 100.0% 0.976 0.734 11.3% 95.3%
Dynamic

1/3
1.000 0.571 57.1% 57.1%

3/3
0.867 0.302 4.0% 62.0%

Static 1.000 0.357 35.7% 35.7% 0.867 0.215 1.7% 62.0%
Static+MAB 1.000 0.341 34.1% 34.1% 0.867 0.229 1.3% 58.0%

Dynamic
2/1

1.000 0.351 15.4% 73.9%
5/1

1.000 0.743 53.2% 86.3%
Static 1.000 0.301 16.1% 57.8% N.A. N.A. N.A. N.A.

Static+MAB 1.000 0.262 9.6% 59.1% N.A. N.A. N.A. N.A.
Dynamic

2/2
1.000 0.471 45.0% 51.4%

5/2
1.000 0.836 75.3% 100.0%

Static 1.000 0.284 21.3% 42.6% N.A. N.A. N.A. N.A.
Static+MAB 1.000 0.279 21.6% 40.6% N.A. N.A. N.A. N.A.

Table 2: Comparison of sampling algorithms.
Algorithm Scen./Seg. Max enorm Avg. enorm Pct. Max CE Pct. CE Scen./Seg. Max enorm Avg. enorm Pct. Max CE Pct. CE

Ours
1/1

1.000 0.313 31.3% 31.3%
3/1

0.733 0.547 7.7% 99.0%
MAB 1.000 0.169 16.9% 16.9% 0.733 0.533 1.0% 98.7%
Halton 1.000 0.100 10.0% 10.0% 0.733 0.524 1.0% 97.7%
Ours

1/2
1.000 0.725 58.8% 100.0%

3/2
0.976 0.819 20.7% 98.0%

MAB 1.000 0.668 50.1% 100.0% 0.976 0.706 17.0% 95.3%
Halton 1.000 0.516 27.3% 100.0% 0.976 0.760 15.3% 93.0%
Ours

1/3
1.000 0.571 57.1% 57.1%

3/3
0.867 0.302 4.0% 62.0%

MAB 1.000 0.753 75.3% 75.3% 0.867 0.214 3.3% 61.7%
Halton 1.000 0.299 29.9% 29.9% 0.867 0.251 2.0% 57.0%
Ours

2/1
1.000 0.351 15.4% 73.9%

5/1
1.000 0.743 53.2% 86.3%

MAB 1.000 0.283 10.6% 63.4% 1.000 0.776 53.3% 92.5%
Halton 1.000 0.289 9.6% 67.1% 1.000 0.748 49.0% 92.5%
Ours

2/2
1.000 0.471 45.0% 51.4%

5/2
1.000 0.836 75.3% 100.0%

MAB 1.000 0.437 43.2% 44.8% 1.000 0.824 73.7% 100.0%
Halton 1.000 0.297 27.9% 33.3% 1.000 0.822 73.0% 100.0%

impossible to merge into a monolithic rulebook, highlighting the limitation of static
rulebooks in addressing dynamic CPS requirements.

As shown in the table, across almost all segments, dynamic rulebooks yield higher
Avg. enorm, Pct. Max CE, and Pct. CE compared to static rulebooks. This improvement
occurs because dynamic rulebooks decompose scenario requirements into a sequence of
smaller static rulebooks, allowing the framework to precisely identify counterexamples
relative to the rulebook of each segment, unlike static rulebooks which cannot differ-
entiate between segments. Similarly, dynamic rulebooks yield higher Avg. enorm, Pct.
Max CE, and Pct. CE than the static rulebook with the MAB setting in all segments.
Moreover, comparing the results of the static rulebook with the MAB setting to the dy-
namic rulebook with the MAB setting (row 2 in Table 2), the latter yields better results
in the majority of segments, demonstrating that under different sampling algorithms,
dynamic rulebooks still capture more and larger counterexamples than static rulebooks.

RQ2: Given a system specified with a dynamic rulebook, does our sampling
algorithm identify a greater number of and larger counterexamples compared to
previous sampling approaches? Table 2 compares the falsification results obtained
using various sampling approaches. We compare our algorithm against multi-armed
bandit (MAB) sampler, which is noted as the best previous sampling approach for
multi-objective systems [16], and an efficient passive sampler, the Halton sampler [9].
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Table 3: Analysis of the generic framework.
Scen./Seg. Framework Max enorm Avg. enorm Pct. Max CE Pct. CE

4
Segmentation N.A. N.A. N.A. N.A.

Unified 0.959 0.636 0.7% 100.0%

2/1
Segmentation 1.000 0.351 15.4% 73.9%

Unified 1.000 0.303 13.1% 64.1%

2/2
Segmentation 1.000 0.471 45.0% 51.4%

Unified 1.000 0.351 34.4% 36.6%

Table 4: Average violation scores
of Scenario 2.
Algorithm / Rules rA,0,1 rC,0,ll rA,0,2 rA,0,3

Ours 0.337 0.361 -2.439 -0.906
MAB 0.410 0.524 -2.683 -1.384
Halton 0.466 0.455 -1.364 -0.398

(a) Ours (𝛿 = 1) (b) Ours (𝛿 = 2) (c) Ours (𝛿 = 4)

(d) Ours (𝛿 = 8) (e) MAB (f) Halton
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Fig. 7: The trade-off between exploitation and exploration in Scenario 2.

Notably, the MAB sampler has been adapted for dynamic settings. The table shows
that our framework yields a higher Avg. enorm, Pct. Max CE, and Pct. CE than the
MAB sampler in eight out of the ten segments, validating the effectiveness of our im-
provement to the MAB sampler. Similarly, our framework also outperforms the Halton
sampler in almost all segments.

RQ3: Can our framework be adapted to diverse domains of applications? As
illustrated in Tables 1 and 2, our framework demonstrates comparable or superior per-
formance in scenarios from both the autonomous driving and human-robot interaction
domains.

6.2 Discussion

In this section, we provide a thorough analysis of the generality, flexibility, and effi-
ciency of our framework.

Analysis of Our Unified-Sampler-based Approach. In Section 4.3, we propose
a unified-sampler-based approach that supports on-the-fly rulebook construction. We
validate its effectiveness with the intersection management scenario (Scenario 4). Since
this scenario requires on-the-fly rulebook construction, the scenario-segmentation-based
framework depicted in Sections 4.1 and 4.2 become unavailable. As shown in Table 3,
our unified sampler successfully identifies a large counterexample with a normalized
error value of 0.959 (the maximum possible normalized error value is 1). Moreover, it
identifies more than 100 types of counterexamples, demonstrating the effectiveness of
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our approach in scenarios with non-fixed rulebooks. However, for scenarios where the
rulebooks are available in advance, the scenario-segmentation-based framework may
still have an advantage. For instance, in Scenario 2, our scenario-segmentation-based
framework achieves higher error values and a greater percentage of counterexamples
than the unified-sampler-based approach. This is because the former creates a dedicated
sampler for each time segment, allowing it to capture counterexamples more accurately.

Balance Between Exploitation and Exploration. There is a trade-off between ex-
ploitation and exploration during sampling. Our approach provides a flexible method to
balance these two aspects. As shown in Algorithm 3, the balance coefficient δ is an input
to the sampler, influencing the exploration term T . A larger δ shifts the algorithm to-
wards greater exploration. Figures 7 (a) to (d) illustrate the sampled points for Segment
1 of Scenario 2 with varying δ values. As δ increases, the samples become more uni-
formly distributed across the sampling space. Furthermore, Fig. 7 (g) plots the average
normalized error (blue curve), representing exploitation, alongside the average standard
deviations of the input features (orange curve), representing exploration. The trade-off
between these two metrics is evident. Users can thus adjust the δ value according to
their requirements, demonstrating the flexibility of our framework.

Additionally, Fig. 7 (d) to (f) visually show that the diversity of our algorithm lies
in between that of MAB and Halton while attaining highest average enorm. This shows
that our algorithm can better identify counterexamples while maintaining a higher di-
versity of samples than MAB.

Quantitative Falsification Results. In the computation of enorm, we only consider
whether each rule is violated or not. To further assess the degree of violation, we com-
pute the average violation score (VS) for all samples. Recall from Definition 3 that a
lower VS indicates a more severe violation. Using Scenario 2 as an example, Table 4
shows that our approach achieves a similar degree of violation as the MAB algorithm
while consistently attaining a lower VS compared to the Halton sampler.

Runtime Analysis. For the largest scenario, Scenario 3, we compute the average
runtime to generate a sample. The average sampling times for our algorithm, the MAB
sampler, and the Halton sampler are 8.84 seconds, 11.17 seconds, and 14.15 seconds,
respectively. These results show the efficiency of our sampling algorithm.

7 Conclusion

Traditional approaches to multi-objective falsification of autonomous CPS fall short in
capturing evolving priorities and objectives. To overcome this limitation, we introduced
dynamic rulebooks to capture how objectives and their priorities change over time. In
addition, we presented a falsification framework tailored for dynamic, multi-objective
systems. Using experiments across various scenarios in the autonomous driving and
human-robot interaction domains, we validated the effectiveness of our framework. Fu-
ture work includes extending the application of dynamic rulebooks and our falsification
algorithm to additional domains and real-world testing.
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