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ABSTRACT
Due to rapidly growing design complexity, timing macro modeling
has been widely adopted to enable hierarchical and parallel timing
analysis. The main challenge of timing macro modeling is to iden-
tify timing variant pins for achieving high timing accuracy while
keeping a compact model size. To tackle this challenge, prior work
applied ad-hoc techniques and threshold setting. In this work, we
present a novel timing macro modeling approach based on graph
neural networks (GNNs). A timing sensitivity metric is proposed to
precisely evaluate the influence of each pin on the timing accuracy.
Based on the timing sensitivity data and the circuit topology, the
GNN model can effectively learn and capture timing variant pins.
Experimental results show that our GNN-based framework reduces
10% model sizes while preserving the same timing accuracy as the
state-of-the-art. Furthermore, taking common path pessimism re-
moval (CPPR) as an example, the generality and applicability of our
framework on various timing analysis models and modes are also
validated empirically.
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1 INTRODUCTION
During the IC design flow, static timing analysis (STA) is regarded
as a crucial and essential step to achieve timing closure. As the
evolution of the IC industry, the design complexity grows rapidly,
and timing analysis has thus become a bottleneck due to its high
computational cost. To improve the efficiency of timing analysis,
hierarchical and parallel timing analysis has been widely adopted.
During hierarchical and parallel timing analysis, a large design is
partitioned into several blocks, each block is then analyzed once,
and a corresponding timing macro model is generated. The macro
model could be reused for duplicate blocks in subsequent analysis,
thus expediting the whole process while preserving the quality. (see
Figure 1.)

Several timing macro modeling approaches have been proposed
in literature. Interface logic models (ILMs) and extracted timing
models (ETMs) [2] are two pioneering paradigms. ILM contains
all the interface logic while eliminating register-to-register logic,
and ETM builds context-independent timing arcs between input
and output ports. The later works start from either of the two
paradigms and attempt to improve the timing accuracy or model
size. ILM-based approaches aim to preserve high timing accuracy,
but they often generate larger models. On the other hand, ETM-
based approaches generate relatively smaller models at the cost
of high timing accuracy loss. Moreover, it is not trivial to extend
ETM-based approaches to handle common path pessimism removal
(CPPR), which is commonly considered in modern design. For ILM-
based approaches, LibAbs [3] and its following work [4] perform
tree-based graph reduction, preserve roots and leaves of maximal
in-trees, and construct primary output segments for output load.
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Figure 1: Hierarchical and parallel timing analysis along with tim-
ing macro modeling. The “core” block is analyzed once, and the cor-
responding timing macro model is reused to all the “core” blocks
[1].

iTimerM [5] propagates minimum/maximum slew values through
the timing graphs, and pins with slew range exceeding a user-
defined tolerance are preserved. ATM [6] is an ETM-based approach;
it marks those pins with slew range exceeding a threshold as dirty,
selects checkpoints from dirty pins, and builds groups as well as
timing arcs accordingly.

The main challenge of timing macro modeling is to identify tim-
ing variant pins for achieving high timing accuracy while keeping
a compact model size. First, to tackle this challenge, previous work
adopts some heuristic techniques during their timing macro model-
ing procedure, which may cause degradation on the solution quality.
For instance, LibAbs [3, 4] applies in-tree and out-tree graph re-
ductions alternatively, based on the observation on the timing arc
forms of cells or nets. Second, some works need to set a threshold
for variant pins identification, which requires considerable engi-
neering effort, and the same threshold may not be applicable for
various circuit designs. For example, iTimerM [5] uses a thresh-
old to separate the variant regions with the constant region, and
ATM [6] uses a threshold to determine which pins are dirty. Lastly,
for advanced node timing analysis models or modes such as CPPR,
existing methods have to design specific algorithms for different
timing analysis models to meet the corresponding requirements,
which may be time-consuming and limited.

Therefore, there is still room for improvement. Recently, graph-
learning-based methods have been proved to outperform the tra-
ditional heuristic-based approaches on multiple EDA problems
on graphs, such as tier partitioning in 3D ICs [7], predictions on
parasitics and device parameters [8], and multiple patterning lithog-
raphy decomposition (MPLD) [9], etc. To overcome the deficiencies
of prior work on timing macro modeling, we introduce graph neural
networks (GNN) to learn the timing variant pins from the circuit
topology and timing propagation properties. In this work, we first
design a timing sensitivity metric that can capture the influence of
each pin on the overall timing accuracy, and generate the training
data for GNN models accordingly. Then, due to the applicability of
GNN on the timing macro modeling problem, the timing properties
of circuit pins could be learnt effectively. Eventually, we establish a
flexible and general GNN-based timing macro modeling framework
that can achieve better solution quality than previous work.

The main contributions of this work are summarized below:
• We take a brand new graph-learning-based approach to the
timing macro modeling problem, in view of the high appli-
cability of GNN on the problem.
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• We propose a timing sensitivity metric that can evaluate the
timing criticality of each circuit pin accurately. The metric
is then used to generate training data for GNN models.
• We propose a flexible timing macro modeling with GNN
framework which is available on general designs, as we only
include small designs during our training phase while our
framework could achieve superior quality on large designs.
• Our framework can easily be applied to different advanced
node timing analyses. We use CPPR as an example, while
the same strategy could be extended to other analyses such
as advanced on-chip-variation (AOCV), parametric on-chip-
variation (POCV), and composite current source (CCS)model.

As an ILM-based approach, experimental results show that our
framework achieves the best timing accuracy in comparison with
state-of-the-art works. Moreover, we improve the model size by 10%
than iTimerM [5], the most accurate state-of-the-art work. Besides,
our framework generates high-quality solutions no matter whether
the CPPR mode is turned on, which implies the generality and
applicability of our framework.

The remainder of this paper is organized as follows: Section 2 for-
mulates the timing macro modeling problem. Section 3 introduces
GNN along with its applicability to the problem and illustrates our
framework. Section 4 details our timing sensitivity metric as well
as the data generation flow. Section 5 details the GNN model train-
ing, the timing macro model generation, along with the generality
of our framework. Section 6 shows experimental results. Finally,
Section 7 concludes this work.

2 PROBLEM FORMULATION
In this work, we follow the problem formulation from TAU 2016
and 2017 contests [1, 10], which is also adopted by most previous
work. The timing macro modeling problem can be defined as
follows:

Given a circuit design with its gate-level netlist and net parasitics,
the early and late cell libraries, and the boundary timing information
(including slew and arrival time of primary inputs, and output load
and required arrival time of primary outputs), the goal is to generate
a timing macro model that encapsulates the timing behaviors of
the design.

The generated timing macro model is evaluated by its model
accuracy, model size, model generation performance, and model
usage performance, where model accuracy is validated by compar-
ing timing analysis results using our timing macro model and the
original flat design, as shown in Figure 2. We adopt iTimerM [5] as
the reference timer, and the results are also aligned with OpenTimer
[11].

3 OVERVIEW OF OUR FRAMEWORK
3.1 GNN and Timing Macro Modeling Problem
Encouraged by the success of deep learning paradigms on a variety
of tasks, graph neural networks (GNNs) have been developed to
apply deep learningmethods to graph data [12, 13]. In a typical GNN
scheme, node information is aggregated and transformed between
neighbors recursively. After several neural network layers, a high-
level representation of each node is extracted, which encapsulates
the features and structures of the node’s neighborhood [7, 8].

There are several reasons that GNN is suitable for the timing
macro modeling problem. First, the evaluation of timing criticality
on circuit pins is usually challenging for heuristic-based methods.
Nevertheless, graph-learning-based methods could capture implicit
properties of circuit pins and thus evaluating timing importance
more precisely. Second, the aggregation of node attributes in GNN
is similar to the propagation of timing values on timing graphs, as
shown in Figure 3. Consequently, the timing properties of circuit
pins could be captured and learned by GNNmodels smoothly. Third,
due to the information exchange mechanism in GNN, the final
representations of adjacent nodes tend to become similar. This
property is desired in timing macro modeling since neighbor pins
are usually of comparable degrees of timing criticality. Lastly, it is
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Figure 2: Timing macro modeling and model accuracy evaluation
flow.

natural to represent circuit netlists by graphs, and thus GNNs could
be easily embedded into the timing macro modeling framework.

3.2 Our Generic Framework
Figure 4 illustrates the proposed timing macro modeling frame-
work. In the first stage, the timing sensitivity of each circuit pin is
evaluated to reflect the influence of each pin on the overall tim-
ing accuracy. Then, the training data is generated accordingly. In
the second stage, we adopt GNN models to learn the properties of
circuit designs and predict the timing sensitivities of testing data.
Finally, starting from the interface logic netlist (ILM), timing macro
models are generated based on our timing sensitivities prediction.
Different from previous work, which mainly focuses on non-linear
delay model (NLDM), our framework could also be applied to other
advanced node timing analysis models such as CCS, AOCV, and
POCV, or different timing modes like CPPR. The generality of our
framework comes from the fact that timing sensitivities could be
adaptively evaluated depending on the given timing delay model.
Moreover, the GNN models could effortlessly capture the corre-
sponding timing properties.

4 TIMING SENSITIVITY DATA GENERATION
4.1 Timing Sensitivity (TS)
In order to generate a high-quality timing macro model, we need
to precisely evaluate the influence of each circuit pin on the timing
accuracy of the whole design. Then, pins with subtle influences
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Figure 3: The analogy between GNN aggregation and timing propa-
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Figure 4: Overview of our framework.

could be waived to reduce the model size and meanwhile the timing
accuracy will not be degraded.

Figure 5 shows how we evaluate the timing sensitivity (TS) of
each pin. Given the input circuit graph, we first randomly gener-
ate several sets of boundary timing constraints. For each timing
constraint, we store the corresponding timing analysis results of
ILM as references. In the timing sensitivity evaluation stage, we
remove a pin from the circuit each time. After the removal, we
perform timing propagation based on each set of boundary timing
constraints generated and compute the differences between the
current and the reference timing values (including slew, arrival
time (at), required arrival time (rat), and slack) at the boundary pins.
Finally, TS of a pin (for convenience, denoted as 𝐴 in the following
discussion) is set as the average of timing value differences under
the different timing constraints. Equations (1) and (2) define the
TS of pin 𝐴, where 𝐶 denotes the collection of generated boundary
timing constraints, and 𝑠𝑙𝑒𝑤𝑐

𝑃,𝑏𝑒 𝑓 𝑜𝑟𝑒
(resp. 𝑠𝑙𝑒𝑤𝑐

𝑃,𝑎𝑓 𝑡𝑒𝑟
) denotes the

slew value of a boundary pin 𝑃 under the timing constraint 𝑐 before
(resp. after) pin 𝐴’s removal. The definitions of Δ𝑎𝑡𝑐

𝐴
, Δ𝑟𝑎𝑡𝑐

𝐴
, and

Δ𝑠𝑙𝑎𝑐𝑘𝑐
𝐴
are similar to that of Δ𝑠𝑙𝑒𝑤𝑐

𝐴
(i.e., Equation (2)).
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𝐴 =

1
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− 𝑠𝑙𝑒𝑤𝑐
𝑃,𝑏𝑒 𝑓 𝑜𝑟𝑒

𝑠𝑙𝑒𝑤𝑐
𝑃,𝑏𝑒 𝑓 𝑜𝑟𝑒

(2)

4.2 Insensitive Pins Filtering
Although the TS evaluation flow could accurately compute the
influence of each pin on the overall timing accuracy, running the
flow for all the pins is time-consuming as we need to perform timing
propagation once in each iteration. To enhance the efficiency, we
first observe that the majority of the pins have extremely small or
even zero TS. It is due to the nature of timing graph that most of
the pins have subtle influences on the overall timing accuracy. For
example, the TS distribution of circuit fft_ispd is shown in Figure 6,
where 70% pins have zero TS, while only few pins have large TS.
Therefore, if we can find a rapid screening method to filter the
insensitive pins first, we could perform TS evaluation flow on the
potential critical pins only.

Figure 5: Timing sensitivity evaluation flow.
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Figure 6: Timing sensitivity distribution of fft_ispd.
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Figure 7: Slew difference and shielding effect.

Timing value difference propagation is a suitable method for
insensitive pins filtering. At each primary input (PI) or primary
output (PO) port, two timing values, 𝑡min and 𝑡max, are set up. We
then propagate the timing values through the design and monitor
the difference between the two timing values at each pin. According
to the shielding effect, as shown in Figure 7, the difference decays
after several levels, and pins with small difference tend to have sub-
tle influence on the overall timing accuracy. Inspired by previous
works [5, 6], we choose slew to propagate from each PI. After the
propagation, the slew difference (SD) at each pin is standardized,
and pins with SD less than a threshold is filtered out. As mentioned
in Section 1, thresholds to distinguish crucial pins are also adopted
in some previous works, where the thresholds must be tuned deli-
cately to obtain favorable results. In contrast, the threshold here
is not required to be precise since it only helps reduce the number
of pins to be evaluated, and thus the quality of generated timing
macro models from our framework is independent of the threshold.
Actually, we have never tuned the threshold value during our ex-
periments. In addition, last stage pins and pins connected to some
output net are also remained for output load variant.

After the insensitive pins filtering, more than 88% pins are fil-
tered out from the TS evaluation flow, which implies the flow be-
comes almost 10 times faster. As a result, the training data could be
generated efficiently. Figure 8 illustrates the whole training data
generation flow.

5 GNN-BASED TIMING MACRO MODELING
5.1 GNN Model Training and Prediction
With the timing sensitivity training data, GNN models could learn
and predict accordingly. In this work, we adopt GraphSAGE [14]
as our main GNN engine. For node 𝑣 , it first aggregates the node
features from its neighborhood N(𝑣) through Equation (3), then
Equation (4) concatenates and encodes the representation of node
𝑣 with the aggregated vector. Other existing GNN models such as
GCN [15] or even self-defined GNNmodels could also be embedded
with our framework.

ℎ𝑘N(𝑣) ←− 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 (ℎ𝑘−1𝑢 ,∀𝑢 ∈ N (𝑣)) (3)

ℎ𝑘𝑣 ←− 𝜎 (𝑊 𝑘 ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 , ℎ𝑘N(𝑣) )) (4)



Figure 8: Timing sensitivity training data generation flow.

Table 1: Training features. The first eight features are basic features,
while the last feature is a dedicated feature for CPPR mode.

Feature Description
level_from_PI The minimum level from a PI to the pin
level_to_PO The min. level from the pin to a PO

is_last_stage_fanout If the pin is the fanout of a last stage pin
is_last_stage If the pin is the last stage of the timing graph
is_first_stage If the pin is the first stage of the timing graph
out_degree The number of output edges of the pin

is_clock_network If the pin belongs to clock network
is_ff_clock If the pin is the clock pin of a flip-flop
is_CPPR If the pin is crucial for CPPR

As we treat the GNN prediction as a classification problem for
the most part, we need to convert the training labels of pins to
{0, 1}. We set the label of a pin to 1 if and only if its TS is not zero.
The conversion is reasonable because a non-zero TS implies the
corresponding pin may have some influence on the overall timing
accuracy. In addition, for CPPR mode, labels of multiple-fan-out
pins of clock networks are also set to 1, since previous works [16, 17]
point out that this kind of pins may be the common points of the
clock paths of sequential elements pair, which is essential for CPPR
calculation.

The training features are listed in Table 1. The features are all
basic circuit properties which could be extracted within linear
time. Features beginning with “is” are of {0, 1} Boolean values. For
level_from_PI, level_to_PO, and out_degree, the values are normal-
ized to [0, 1] so that each feature have the same level of influences.

5.2 Timing Macro Model Generation
Figure 9 details the timing macro model generation stage. First,
we capture the interface logic netlist to construct ILM. Second,
based on the predictions from GNN models, we perform serial and
parallel mergings to remove insensitive pins. Afterward, we apply
the lookup table index selection method proposed in [5], where
indices that minimize the interpolation timing error are selected.
Lastly, the timing macro model is generated.

5.3 Flexibility and Generality of Our
Framework

As mentioned in Section 3, our framework can be applied to dif-
ferent timing analysis models or modes. The reason is that the
timing-sensitivity-based training labels, the basic features, and the
circuit netlist structure are enough to reflect the importance of
each pin, either in an explicit or implicit manner. However, to help
GNN model training, we may leverage domain knowledge for each
specific timing model or mode. Take CPPR as an example. As we
know, multiple-fan-out pins of clock networks are crucial for CPPR
calculation. Thus, we could add a dedicated training feature for
CPPR to indicate this kind of pins, called 𝑖𝑠_𝐶𝑃𝑃𝑅. Before adding
the special feature into GNN model training, the other features
such as 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 and 𝑖𝑠_𝑐𝑙𝑜𝑐𝑘_𝑛𝑒𝑡𝑤𝑜𝑟𝑘 along with the timing
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Figure 9: Timing macro model generation.

sensitivities could implicitly indicate multiple fan-out pins of clock
networks; therefore, we could already obtain high-quality timing
macro models. After including the dedicated feature to explicitly
identify this kind of pins, we could further enhance the results, and
the training process becomes more efficient. The technique could
be applied to other timing models as well.

In addition, our training designs are of 104 to 106 pins, while test-
ing designs mostly have millions of pins. However, as experimental
results show, our framework could capture the timing properties
from small designs and obtain good results on large designs. It im-
plies that our framework could be directly used to generate timing
macro models for general designs.

Lastly, the GNN prediction in our framework could also be
treated as a regression problem, i.e., timing sensitivities are set
as training labels directly, and the framework could not only learn
which pins are critical for timing accuracy, but also capture the
relative criticality between pins.

6 EXPERIMENTAL RESULTS
In our framework, the timing sensitivity data generation and timing
macro model generation are implemented in the C++ programming
language, while the GNN model training and prediction are im-
plemented in Python3 programming language with the PyTorch
library. The experiments are conducted on a Linux workstation
with 3.7 GHz CPU, 192 GB RAM, and an NVIDIA RTX 3090 GPU.
Our framework is validated on the benchmark suite released by
TAU 2016 and TAU 2017 contests [1, 10]. Table 2 lists the statistics
of the benchmarks.

Table 3 shows the results on TAU 2016 [1] and TAU 2017 [10]
benchmarks considering CPPR and the comparisons with two state-
of-the-art ILM-based works iTimerM [5] and [4]. Among all the
criteria, max error and model file size are viewed as the most crucial
ones. Our framework achieves extremely high timing accuracy as
all the max errors are less than 0.1ps, which is same as iTimerM
[5] and 9 times better than [4]. As for model file size, our result is
about 10% smaller than iTimerM [5] and 45% smaller than [4]. To
summarize, our framework preserves the highest timing accuracy
in terms of max errors among the state-of-the-art works, while
further improving the model size by 10% than the same-accuracy-
level work. Our framework also achieves similar or even better
results in terms of model generation performance and model usage
performance. The average errors of our framework are slightly

Table 2: Testing data statistics.
Design #Pins #Cells #Nets

mgc_edit_dist_iccad_eval 581319 224113 224101
vga_lcd_iccad_eval 768050 286597 286498
leon3mp_iccad_eval 4167632 1534489 1534410
netcard_iccad_eval 4458141 1630171 1630161
leon2_iccad_eval 5179094 1892757 1892672

mgc_edit_dist_iccad 450354 164266 164254
vga_lcd_iccad 679258 259251 259152
leon3mp_iccad 3376832 1248058 1247979
netcard_iccad 3999174 1498565 1498555
leon2_iccad 4328255 1617069 1616984

mgc_matrix_mult_iccad 492568 176084 174484
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Figure 10: Separated TS distribution based on the insensitive pins
filtering.

higher than those of iTimerM [5]; however, the difference is only a
few femtoseconds and thus can be neglected.

As mentioned in Section 5, we could leverage the domain knowl-
edge to help GNN model training for different timing models or
modes. We use CPPR as an example, and the result is shown in
Table 4. We adopt the results of iTimerM [5] as the baseline and
calculate the differences and ratios as described in Table 3. Before
adding the CPPR-dedicated feature (i.e., is_CPPR), our framework
could already achieve the same timing accuracy as iTimerM [5]
while reducing the model size by 6%. After the is_CPPR feature
is included, our framework still preserves the same timing accu-
racy while improving the model size by 10%. The result tells that
our framework could achieve superior quality with only the ba-
sic features, while the dedicated features could capture the timing
properties of designs more precisely.

Table 5 displays the results on the TAU 2017 [10] benchmark
without CPPR. Our results are compared with the ILM-based work
iTimerM [5] and the ETM-based work ATM [6]. In comparison
with ATM [6], our framework achieves 9 times better max error
and 25 times better average error, but it suffers from a larger model
size. It is as our expectation since our framework is ILM-based
while ATM [6] is ETM-based. Besides, we also achieve 17 times
faster model generation runtime than ATM [6]. As for the ILM-
based work iTimerM [5], we preserve the same timing accuracy
while improving the model size by 9%. The result demonstrates the
applicability and generality of our framework on different timing
modes (CPPR on and CPPR off), and it may be further inferred to
various timing delay models and modes.

As mentioned in Section 4, the goal of the insensitive pins filter-
ing is to exclude non-critical pins rapidly, under the premise that
the timing accuracy is not degraded. Figure 10 shows the timing
sensitivities of pins in the training design systemcaes. TS of pins
that are filtered out are shown in the left histogram, and those of
the potential sensitive pins are shown in the right histogram. It can
be seen that a majority of filtered pins indeed have zero TS, while
many remained pins have non-zero TS. It confirms the consistency
between the insensitive pins filtering and the TS evaluation, which
implies the insensitive pins filtering is suitable for accelerating the
training data generation flow. To further ensure the timing accu-
racy is not degraded by the insensitive pins filtering, we conduct
an experiment in which the training labels of all the remained pins
after the insensitive pins filtering are set to 1. The result is shown
in Table 6. The results of iTimerM [5] are adopted as the baseline,
and the differences and ratios are calculated as described in Table 3.
The results achieve the same timing accuracy as iTimerM [5] which
is of the best accuracy among the previous works. Therefore, it is
supported that the insensitive pins filtering does not degrade the
resulting timing accuracy.

Lastly, to evaluate our framework’s efficiencywhenwe encounter
new benchmarks under the same NLDM libraries, we only need to
consider the GNN model inference runtime and the model genera-
tion runtime since our framework is available on general designs
under the NLDM. The GNN model inference time usually takes less
than 5 seconds for each design, which is much less than the model
generation time listed in the above tables. Thus, our framework
spends comparable or even better runtime than previous work for
unseen test data under the NLDM. As for other timing delay models
such as AOCV, POCV, and CCS, we need to further consider the

training data generation time and the GNN model training time.
The timing sensitivity training data generation takes several min-
utes to several hours, depending on the size of the design, and the
GNN model training consumes about 30 minutes. However, since
our framework could be directly applied to perform timing macro
modeling no matter which timing model is chosen, users do not
need to spend a great deal of time designing specific algorithms for
different timing delay models and tuning a bunch of parameters.
As a consequence, our framework still shows high applicability and
efficiency on the timing macro modeling problem.

7 CONCLUSION
In this paper, we propose a generic timing macro modeling frame-
work that is applicable on various timing analysis models and
modes. In our framework, we first evaluate the timing criticality of
each pin through a timing sensitivity metric, and generate the train-
ing data accordingly. Then, due to the analogy between the GNN
and the timing macro modeling, GNN model can capture the timing
properties effectively. Eventually, high-quality macro models could
be generated. Experimental results based on TAU 2016 [1] and TAU
2017 [10] benchmarks show our framework achieves extremely
high timing accuracy while further improving the model size than
the most accurate state-of-the-art work. Moreover, taking CPPR as
an example, the generality and applicability of our framework is
also validated empirically.
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Table 3: Experimental results on TAU 2016 [1] and TAU 2017 [10] benchmarks with CPPR. For the model file size, we adopt the size of the
library for late timing. Difference 1 and ratio 1 are compared with iTimerM [5]. Difference 2 and ratio 2 are compared with [4]. Difference =
compared result - our result. Ratio = compared result / our result. Note that [4] is only evaluated on TAU 2016 benchmark in their work.

Design
Avg.
Error
(ps)

Max
Error
(ps)

Model
File Size
(MB)

Generation
Runtime

(s)

Generation
Memory
(MB)

Usage
Runtime

(s)

Usage
Memory
(MB)

Ours 0.0000 0.007 Ours 56 11 1087 8 475
mgc_edit_dist_iccad_eval iTimerM 0.0000 0.007 iTimerM 64 10 1043 8 550

[3] N.A. 0.158 [3] 79 15 5 4 5
Ours 0.0006 0.040 Ours 45 12 1204 6 383

vga_lcd_iccad_eval iTimerM 0.0006 0.040 iTimerM 50 13 1208 7 402
[3] N.A. 0.255 [3] 72 24 399 4 5
Ours 0.0004 0.052 Ours 35 50 4908 5 324

leon3mp_iccad_eval iTimerM 0.0004 0.052 iTimerM 45 58 4807 6 395
[3] N.A. 0.220 [3] 86 78 5 5 5
Ours 0.0000 0.004 Ours 213 89 6609 29 1757

netcard_iccad_eval iTimerM 0.0000 0.004 iTimerM 220 65 6513 29 1822
[3] N.A. 0.203 [3] 372 101 12616 23 4332
Ours 0.0002 0.016 Ours 369 89 8298 64 3034

leon2_iccad_eval iTimerM 0.0002 0.016 iTimerM 372 82 7865 61 3056
[3] N.A. 0.241 [3] 676 105 15299 38 5315

TAU 2016 Average Difference 1 0.0000 0.000 Ratio 1 1.116 0.961 0.975 1.099 1.094
Difference 2 N.A. 0.192 Ratio 2 1.809 1.448 0.818 0.738 0.851

mgc_edit_dist_iccad Ours 0.0029 0.052 Ours 60 16 1054 8 514
iTimerM 0.0003 0.052 iTimerM 66 12 1063 9 537

vga_lcd_iccad Ours 0.0024 0.080 Ours 56 16 1455 7 474
iTimerM 0.0023 0.080 iTimerM 58 15 1429 8 487

leon3mp_iccad Ours 0.0031 0.046 Ours 37 68 5407 5 332
iTimerM 0.0016 0.046 iTimerM 46 67 5281 6 406

netcard_iccad Ours 0.0013 0.029 Ours 239 101 7814 35 1938
iTimerM 0.0003 0.029 iTimerM 248 98 7545 33 1993

leon2_iccad Ours 0.0027 0.095 Ours 438 125 8171 62 3613
iTimerM 0.0013 0.095 iTimerM 440 109 8049 64 3625

TAU 2017 Average Difference -0.0013 0.000 Ratio 1.084 0.903 0.984 1.070 1.065

Table 4: Experimental results with and without CPPR-dedicated features.

Benchmark Avg.
Error

Max
Error

Model
File Size

Generation
Runtime

Generation
Memory

Usage
Runtime

Usage
Memory

TAU2016 (avg.) Difference Before 0.0000 0.000 Ratio Before 1.064 1.055 0.959 1.133 1.048
Difference After 0.0000 0.000 Ratio After 1.116 0.961 0.975 1.099 1.094

TAU2017 (avg.) Difference Before -0.0001 0.000 Ratio Before 1.060 0.828 0.994 1.115 1.037
Difference After -0.0013 0.000 Ratio After 1.084 0.903 0.984 1.070 1.065

Table 5: Experimental results on TAU 2017 benchmark without CPPR. Difference 1 and ratio 1 are compared with iTimerM [5]. Difference 2
and ratio 2 are compared with ATM [6]. Difference = compared result - our result. Ratio = compared result / our result. We additionally include
the circuit mgc_matrix_mult_iccad to evaluate since ATM [6] also adopts it as one test case.

Design
Avg.
Error
(ps)

Max
Error
(ps)

Model
File Size
(MB)

Generation
Runtime

(s)

Generation
Memory
(MB)

Usage
Runtime

(s)

Usage
Memory
(MB)

Ours 0.0033 0.052 Ours 59 14 1069 9 563
mgc_edit_dist_iccad iTimerM 0.0007 0.052 iTimerM 65 13 1062 9 523

ATM 0.0960 0.402 ATM 2 833 N.A. 0.36 N.A.
Ours 0.0026 0.080 Ours 52 18 1457 7 442

vga_lcd_iccad iTimerM 0.0023 0.080 iTimerM 55 17 1420 9 450
ATM 0.0400 0.160 ATM 0.3 85 N.A. 0.06 N.A.
Ours 0.0033 0.046 Ours 31 78 5392 5 275

leon3mp_iccad iTimerM 0.0018 0.046 iTimerM 31 102 5257 4 286
ATM 0.1070 0.460 ATM 0.6 740 N.A. 0.09 N.A.
Ours 0.0033 0.029 Ours 226 124 7804 32 1795

netcard_iccad iTimerM 0.0005 0.029 iTimerM 229 104 7539 33 1838
ATM 0.0540 0.246 ATM 1.6 618 N.A. 0.27 N.A.
Ours 0.0027 0.095 Ours 408 193 8156 60 3378

leon2_iccad iTimerM 0.0013 0.095 iTimerM 410 152 7782 59 3390
ATM 0.0400 0.240 ATM 2.4 1055 N.A. 0.34 N.A.
Ours 0.0032 0.054 Ours 124 27 1106 18 924

mgc_matrix_mult_iccad iTimerM 0.0020 0.054 iTimerM 171 29 1114 24 1098
ATM 0.1300 0.450 ATM 12 629 N.A. 1.63 N.A.

Average Difference 1 -0.0016 0.000 Ratio 1 1.093 0.980 0.978 1.085 1.033
Difference 2 0.0748 0.267 Ratio 2 0.028 17.910 N.A. 0.029 N.A.

Table 6: Validation on insensitive pins filtering.
Benchmark Avg. Error Max Error Model File Size
TAU2016 0.0000 0.000 1.040
TAU2017 0.0000 0.000 1.009

[17] Pei-Yu Lee, Iris Hui-Ru Jiang, Cheng-Ruei Li, Wei-Lun Chiu, and Yu-Ming Yang.
iTimerC 2.0: Fast incremental timing and CPPR analysis. In International Confer-
ence on Computer-Aided Design (ICCAD), pages 890–894, 2015.
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